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Введение 
 
 Предметом теории вероятностей является математический анализ 
понятия случайности. Ее строгое построение, как и всякой математической 
дисциплины, возможно на основе некоторой системы точных определений 
и аксиом. Этих аксиом всего три, и они почти очевидны. 
 Обоснование необходимости изучения элементов теории 
вероятностей и ее применимости при решении технических задач можно 
провести следующим образом. Во - первых, понятие вероятности отражает 
универсальную физическую сущность изучаемых явлений. Во - вторых из 
множества различных ситуаций, встречающихся в инженерной практике, 
можно выделить такие, где использование понятия вероятности является 
обязательным.  
 Цель изучения реальных явлений - установление причинно - 
следственных связей между отдельными его сторонами. В случае 
однозначности исхода явления при выполнении некоторого комплекса 
условий связь называют детерминированной. Такой вид имеют законы 
классической механики. Однако для широкого круга явлений наблюдается 
неоднозначность исхода при повторении эксперимента с сохранением 
основных условий его проведения. События, связанные  с такими 
явлениями, называют случайными. Например, случайны выигравшие 
номера в тираже лото; результаты измерений; число транспортных 
средств, проходящих мимо контрольных пунктов системы управления 
дорожным движением; флуктуации температуры снаружи и внутри здания, 
информация о которых подается на вход системы отопления и 
кондиционирования и т. д. Еще одним интересным явлением служит 
эволюция, непрерывно совершающаяся в растительном и животном мире. 
В ее основе лежат мутации – случайные изменения в структуре генов. 
Случайно возникшая мутация способна быстро усилиться в процессе 
размножения клеток организма. Одновременно с мутациями (случайными 
изменениями генетических программ) происходит процесс отбора 
организмов по степени приспособленности к условиям окружающей 
среды. Таким образом, эволюция основывается на отборе случайных 
изменений генетических программ и идет при этом не по пути отбора 
более сложных, а по пути отбора более приспособленных организмов. 
 Случайность не означает отсутствие - причинно следственных 
связей. В реальном мире эти связи являются вероятностными. Они 
проявляются в том, что, несмотря на множество случайных факторов 
данная ситуация обнаруживает некоторое постоянство, называемое обычно 
статистической устойчивостью. Вероятностные (статистические) причинно 
- следственные связи являются общим видом связей, тогда как связи, 
приводящие к однозначным предсказаниям, представляют собой лишь  
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частный случай. Если однозначные предсказания предполагают наличие в 
рассматриваемом явлении только необходимости, то вероятностные 
предсказания связаны одновременно и с необходимостью и со 
случайностью. Так, мутации случайны, но процесс отбора закономерен 
(необходим). Случайное и необходимое всегда выступают вместе. 
 Формирование порядка и закономерности из массы случайностей 
приводит к понятию вероятности, которое отражает устойчивость 
окружающего нас мира, его динамизм и способность к развитию. 
 Разделом математики, в котором изучаются математические модели 
случайных явлений, является теория вероятностей. Ее методы широко 
применяются в различных отраслях науки и техники: проблема запасов; 
теория массового обслуживания, которая помогает организовать 
эффективную работу современного производства; теория управления; 
теория надежности технических систем; виброакустическая диагностика; 
общая теория связи; военное дело; строительная механика; теория 
механизмов и машин; и т. д. Она служит для обоснования статистики, 
которая используется при планировании и организации производства, 
анализе технологических процессов, контроле качества продукции и т. д. 
 Особенность вероятностных методов состоит в том, что они 
рассматривают исследуемое явление в целом, изучают результаты 
совместного действия всех причинных связей, которые невозможно 
проследить по отдельности. 
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1. Эксперимент. Событие. Случайные величины 
 
 Как в любой теоретической науке, в теории вероятностей исходным 
пунктом для построения служат некоторые экспериментальные факты, на 
основе которых формируются соответствующие абстрактные понятия.  
 Первичным понятием теории вероятностей является понятие 
эксперимента. Эксперимент состоит в том, что производится испытание 
при выполнении некоторого комплекса условий, которые либо создаются 
искусственно, либо осуществляются независимо от воли 
экспериментатора. Результаты эксперимента можно трактовать 
качественно и количественно. 
 Качественная характеристика эксперимента состоит в регистрации 
какого - либо факта, то есть в определении того, обладают результаты 
эксперимента каким - либо свойством или нет. Любой такой факт 
(результат эксперимента) называют событием. 
Примеры случайных экспериментов: 

1. Изделия выпускаются партиями по n штук. Проверка качества 
изделия приводит к их разрушению. Поэтому для проверки партии 
на качество выбирают m изделий  (m < n). Эксперимент заключается 
в выборе m изделий из партии и их проверке. Результат 
эксперимента – число обнаруженных дефектных изделий. 

2. Розыгрыш лотереи можно рассматривать как случайный 
эксперимент, результатом которого является выпадение выигрышей 
на определенные лотерейные билеты. 
 
Мы будем рассматривать события лишь с точки зрения их 

осуществления или неосуществления. Анализ этого понятия приведет нас 
к тому, что мы наделим множество событий, которые рассматриваются в 
связи с определенной задачей, структурой булевой алгебры. С 
аксиоматической точки зрения события представляют собой 
математические объекты, которые можно комбинировать с помощью 
логических операций «нет», «и», «или» (в соответствии с правилами, 
описанными ниже). События обозначают прописными латинскими 
буквами  А, В, С, … 

 
 Наблюдаемые события можно разделить на три вида: 

Достоверное – событие, которое обязательно происходит при 
эксперименте. Обозначается буквойΩ . Например, выбор годной детали из 
партии, в которой все детали доброкачественные. 
Невозможное – если в результате эксперимента оно не произойдет. 
Обозначается знаком ∅ . Например, наличие четырех бракованных изделий 
в партии из трех деталей. 
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Случайное – если в результате эксперимента оно может произойти, а 
может и не произойти. Например, попадание в цель при одном выстреле, 
отказ прибора в данном интервале времени. 

  
Количественная характеристика эксперимента состоит в определении 

значений некоторых величин, полученных в результате эксперимента.  
Величины, которые могут принимать в результате эксперимента 

различные значения, причем до опыта невозможно предвидеть, какими 
именно они будут, называются случайными величинами. Например, 
ошибки и результаты измерений, время безотказной работы прибора или 
системы, координаты точки попадания снаряда при выстреле, число 
попаданий при n выстрелах. Обозначают случайные величины 
прописными буквами латинского алфавита: X, Y, Z, … , а их конкретные 
значения – соответствующими малыми буквами: x, y, z. Эти значения 
называются возможными значениями или реализациями случайных 
величин X, Y, Z.    
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2. Алгебра событий 
 

Рассмотрим множество F событий, которые можно наблюдать в 
некотором случайном эксперименте. Пусть Ω  – достоверное событие, а ∅  
– невозможное принадлежат множеству F.  

Каждому событию А поставим в соответствие противоположное 
(дополнительное) событие, обозначаемое A  и означающее, что событие A  
реализуется тогда и только тогда, когда событие А не реализуется. Введем 
как аксиомы следующие свойства этой операции: 

ÀÀ =)( ;  Ω=∅ ; ∅=Ω . 
 
Примерами противоположных событий могут служить попадание и 

промах при выстреле, отказ прибора в данном интервале времени и его 
исправная работа в том же интервале времени. 

Для каждой пары событий А и В введем операции объединения и 
пересечения. 

 
Определение. Событие ÂÀU , заключающееся в том, что из двух событий 
А и В происходит по крайней мере одно, называют объединением событий 
А и В. 
Событие ÂÀI  (АВ), заключающееся в том, что происходят одновременно 
оба события А и В, называют пересечением событий А и В. 
Операции объединения и пересечения коммутативны и ассоциативны: 

ÀÂÂÀ UU = ; 
)()( ÑÂÀÑÂÀ UUUU = ; 

ÀÂÂÀ II = ; 
)()( ÑÂÀÑÂÀ IIII = . 

Следующие формулы вводятся как аксиомы: 
ÀÀ =∅U ; 
ÀÀÀ =U ; 
∅=∅IÀ ; 
Ω=ÀÀU ; 
ÀÀÀ =I ; 
Ω=ΩUÀ ; 
∅=ÀÀI ; 
ÀÀ =ΩI . 

 
Введенные соотношения переносятся с двух событий на произвольное 

конечное непустое семейство событий { }IiAi ∈, . Операции объединения 
и пересечения  дистрибутивны по отношению друг к другу: 
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)()( i
Ii
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Ii

ABAÂ IUUI
∈∈
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)()( i
Ii

i
Ii

ABAÂ UIIU
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= . 

Структура, которая образуется на множестве событий введенными 
определениями и аксиомами, называется структурой булевой алгебры. 
Рассмотрим вспомогательные понятия, определяемые на булевой алгебре 
событий. 

 
Два события А и В, для которых ∅=ÂÀI , называются 

непересекающимися (взаимно исключающими). Объединение таких 
событий называют суммой и обозначают А + В вместо ÂÀU . 

Разностью двух событий А и В называют событие А – В, состоящее в 
том, что произойдет событие А и не произойдет событие В. Очевидно, что 

ÂÀÂÀ =− . 
Симметрической разностью двух событий А и В называют событие 

)()( ÀÂÂÀÂÀ −+−=Δ , означающее, что происходит лишь одно из А, В. 
События ïÀÀÀÀ ,...,,, 321  образуют полную группу событий, если они 
попарно не пересекаются (несовместны) и  

Ω=ïÀÀÀÀ UUUU ...321 , 
то есть в результате эксперимента происходит одно и только одно из них. 

Говорят, что событие А влечет событие В (обозначают ÂÀ⊂ ), если 
событие В обязательно происходит при появлении события А. Если 
события А и В могут появиться или не появиться только вместе, то есть 

ÂÀ⊂  и ÀÂ ⊂ , то они называются эквивалентными (А = В). 
Эквивалентные события различать не будем. Отношение «влечет» является 
отношением порядка в множестве событий. 

Бросающаяся в глаза аналогия между событиями и множествами 
объясняется тем, что каждое событие связано с определенным множеством 
исходов эксперимента так, что оно обязательно происходит при появлении 
одного из исходов, принадлежащих этому множеству, и не происходит при 
появлении одного из исходов, не принадлежащих этому множеству. 
Например, событие, состоящее в том, что при двух выстрелах по мишени 
будет одно попадание, есть сумма двух непересекающихся событий: 
попадание 1À  при первом и промах 2À  при втором выстреле и промах при 
первом 1À  и попадание 2À  при втором выстреле 

2121 ÀÀÀÀÀ += . 
Для строгого математического обоснования вводят понятие 

элементарного события. 
Элементарным событием называется событие, не содержащее 

никаких подсобытий, кроме невозможного события и самого себя 
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В эксперименте элементарное событие - это результат эксперимента. 
Каждое, относящееся к рассматриваемой модели элементарное событие, 
влечет либо наступление, либо ненаступление каждого данного события, 
связанного с рассматриваемой моделью. Например, при одном выстреле по 
мишени элементарными событиями будут промах и попадание.  В 
эксперименте – при двух выстрелах по мишени будет одно попадание – 
элементарными событиями будут: попадание при первом и промах при 
втором выстреле и промах при первом и попадание при втором выстреле. 

Случайный эксперимент называется конечным, если имеется полная 
группа элементарных событий. 

В теории вероятностей рассматриваются лишь такие случайные 
эксперименты, в которых каждое событие является суммой всех 
элементарных событий, влекущих это событие. Такой случайный 
эксперимент описывается множеством элементарных событий, связанных 
с ним и некоторым классом его подмножеств – событий. Такое множество 
называется пространством элементарных событий. Обозначается 
обычно Ω . При этом любое элементарное событие – точка пространства Ω  
обозначается буквой  ω . Достоверное событие представляет собой 
множество всех элементарных событий Ω . Невозможное событие 
представляет собой пустое множество ∅ . Например, пространство 
элементарных событий в эксперименте, заключающемся в том, что 
наблюдается попадание или промах при двух выстрелах по мишени 
состоит из четырех элементарных событий: два попадания, попадание – 
промах, промах – попадание, два промаха.  

Для наглядности построенной математической модели случайных 
явлений удобно условно считать пространство элементарных событий Ω  
некоторой областью плоскости (квадратом), элементарное событие ω  – 
точками этой области; при этом события удобно изображать в виде 
некоторых фигур (кругов) (рис 1). 
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Рис. 1.  Схематичное изображение элементарных событий: 
1 - А и В – несовместные события; 2 - ВАU   – объединение событий А 
и В; 3 - АВ – пересечение событий А и В; 4 - А - В – разность событий 
А и В; 5 - A - противоположное к А событие; 6 - АВ ⊂  –  событие В 
влечет событие А.      

 
Важным примером случайного эксперимента  является эксперимент, в 

котором измеряется некоторая величина Х. В качестве элементарных 
событий здесь можно взять события вида (Х = х), где х – некоторое 
фиксированное значение. Множество элементарных событий естественно 
отождествить с множеством точек на прямой. Если априори известно, что 
Х может принимать лишь значения из некоторого множества М, то это 
множество и следует рассматривать как множество элементарных 
событий. В процессе измерения естественно предполагать возможность 
наблюдения события  { }bXa <≤ , где а < b – произвольные числа. 
Всевозможные конечные суммы таких полуинтервалов можно 
рассматривать как алгебру событий, связанных с экспериментом. 
       

В 

А А 
В В 

А 

1 2 3 

А 

А
А В 

5 6 

А

В 

4 
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3. Аксиомы вероятности 
 

Для количественного сравнения между собой событий по степени 
возможности их появления вводится определенная численная мера, 
называемая вероятностью события.  Это численная мера объективной 
возможности появления этого события. 

Существуют различные способы введения этой меры. Согласно 
аксиоматическому подходу существование такой меры для каждого 
события постулируется, а свойства определяются совокупностью аксиом: 

1. Каждому событию А соответствует неотрицательное действительное 
число Р(А), называемое вероятностью события А. 

2. Вероятность достоверного события равна единице, то есть 1)( =ΩP . 
3. Если А и В – несовместные события, то  

Р(А+В) = Р(А) + Р(В). 
Последнюю аксиому по индукции можно распространить на n попарно 
непересекающихся событий: 

∑ ∑
= =

=
n

k

n

k
kk APAP

1 1
)()( . 

Эта система аксиом непротиворечива и служит основой элементарной 
теории вероятностей, изучающей конечные множества событий. При 
рассмотрении бесконечных множеств она дополняется аксиомой 
непрерывности: 
для убывающей последовательности событий KK ,,,, 21 kAAA , такой, что 

KK ⊃⊃⊃ AAA 21  и ∅=
∞

=
k

k
AI

1
, имеет место соотношение 

0)(lim =
∞→ kk

AP . 
Вся теория вероятностей строится на этих аксиомах. Критерием их 

справедливости является степень, с которой теория, построенная на их 
основе, отражает реальный мир. 
Задачей теории вероятностей является вычисление вероятности сложных 
событий, определенным образом связанных с некоторой совокупностью 
простых событий, вероятности которых заданы. Для теории вероятностей 
несущественно, как именно определяются  вероятности исходной 
совокупности случайных событий. 
 

Следствия из аксиом теории вероятностей 
 
1. Вероятность события A , противоположного событию, А вычисляют по 
формуле 

)(1)( APAP −= . 
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Доказательство:  
Так как события А и A  противоположны, то Ω=+∅=⋅ AAAA ,  и на 
основании аксиом 2 и 3 имеем 1)()()( =+=Ω APAPP , откуда следует 
искомое равенство )(1)( APAP −= . 
2. Вероятность невозможного события равна нулю, то есть 0)( =∅P . 
Доказательство: 
Так как ∅=Ω , то на основании следствия 1 имеем  

011)(1)( =−=Ω−=∅ PP . 
3. Если событие А влечет за собой событие В, то вероятность события А 
меньше или равна вероятности события В, то есть )()( BPAP ≤ , если BA ⊂ . 
Доказательство: 
Пусть BA ⊂ , тогда )( BAAB += , где  ∅=)( BAA . Согласно аксиоме 3 
имеем )()()( BAPAPBP += , но 0)( ≥BAP  (аксиома 1). Отсюда 

)()( BPAP ≤ . 
4. Вероятность события А есть число, заключенное между нулем и 
единицей, то есть 

1)(0 ≤≤ AP . 
Доказательство: 
Из соотношения Ω⊂A  и аксиомы 1 следует )(0 AP≤  и 1)()( =Ω≤ PAP , 
следовательно, 1)(0 ≤≤ AP . 
5. Если А и В два произвольных события, которые могут и пересекаться, то 
справедливо соотношение  

)()()()( ABPBPAPBAP −+=+ . 
Доказательство: 
Представим объединение событий А и В в виде суммы двух 
непересекающихся событий А и BA , то есть  

BAABA +=+ , 
с другой стороны,  

)()( BAABB += , где ∅=))(( BAAB  
Согласно аксиоме 3 имеем  

)()()( BAPAPBAP +=+ ; 
)()()( BAPABPBP += . 

Из последних равенств получаем  
)()()()( ABPBPAPBAP −+=+ . 

Примечание. Аксиомы теории вероятностей были сформулированы в 30 - х  
годах 20 столетия академиком Андреем Николаевичем Колмогоровым 
(1903 – 1987). 
Замечание. Вероятность, как следует из сказанного выше, рассматривается 
как функция от случайного события. 
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4. Частота событий. Статистическая вероятность 
 

Математическое понятие вероятности случайного события является 
абстрактной характеристикой, присущей не самим интересующим нас 
объектам материального мира, а их теоретико-множественным моделям. 
Требуется некоторое дополнительное соглашение для того, чтобы можно 
было извлечь сведения о вероятностях из экспериментальных данных.  

Одной из существенных особенностей случайных экспериментов 
является возможность повторять их большое число раз. Если  Ω  – 
пространство элементарных событий эксперимента, то осуществление 
эксперимента означает выбор некоторой точки Ω∈ω , а повторение этого 
эксперимента n раз означает выбор последовательности точек 

nωωω ,,, 21 K в Ω . Обозначим число появления события А в n экспериментах 
через )(AKn . Величина 

)(1)( AK
n

A nn =ν  

называется частотой появления события А в n экспериментах. Она до 
некоторой степени характеризует объективную связь между условиями 
эксперимента и событием А, указывая, как часто эти условия вызывают 
событие А. 
 

Основные свойства частот 
1. Если Ω   –  достоверное событие, то 1)( =Ωnν . 
2. Если ∅  – невозможное событие, то 0)( =∅nν . 
3. Для всякого события А имеет место соотношение 1)(0 ≤≤ Anν . 
4. Если BA ⊂ , то )()( BA nn νν ≤ . 
5. Если А и В – несовместные события, то )()()( BABA nnn ννν +=+ . 
6. Для всякого события А справедливо равенство )(1)( AA nn νν −= . 
Важным, экспериментально установленным фактом является свойство 

устойчивости частот. При увеличении числа экспериментов частоты 
событий колеблются около некоторых чисел, не зависящих ни от числа, ни 
от серии экспериментов, а определяются только событием А, причем 
частоты неограниченно приближаются к этим числам, когда ∞→n . Эти 
числа естественно связать с каждым событием, происходящим в 
случайном эксперименте. Они называются вероятностями 
(статистическое определение вероятности).  

Знаменитый швейцарский ученый  Яков Бернулли привел 
математическое доказательство того, что при большом числе испытаний 
частота стремится к вероятности и в пределе при большом числе 
экспериментов должна практически совпадать с ней. Это положение носит 
название закона больших чисел. 
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5. Классическое определение вероятности. Конечное 
вероятностное пространство 

 
Статистическую вероятность события можно вычислить только 

после производства эксперимента, однако в ряде случаев проводить 
эксперимент для определения вероятности или невозможно, или 
нецелесообразно. Классическое определение вероятности основано на 
интуитивном понятии равновозможности событий.  
Несколько событий в данном эксперименте называются 
равновозможными, если по условию симметрии есть основание считать, 
что ни одно из этих событий не является объективно более возможным, 
чем другое. 

Рассмотрим некоторый эксперимент с конечным числом 
взаимоисключающих друг друга исходов (элементарных событий), 
которые равновозможны. Обозначим А некоторое событие, связанное с 
указанными исходами. Тогда вероятность каждого элементарного события 

равна 
n
1 , где n – число исходов. Вероятность события ∑

=

=
n

k
ikEA

1
 ( ikE – 

элементарные события) может быть определена как доля тех исходов, в 
результате которых это событие осуществляется. 

n
mAP =)( , 

где m – число тех исходов, которые приводят к наступлению события А. 
Из классического определения вероятности следует 1)(0 ≤≤ AP , так как 

nm ≤≤0 . Классическая вероятность обладает всеми свойствами 
аксиоматической вероятности. 
Тройку (Ω , А, Р), в которой Ω  – пространство элементарных событий, А – 
алгебра событий, Р – вероятность событий называют вероятностным 
пространством. Оно дает самую общую математическую модель 
случайных явлений. Конечное вероятностное пространство иногда 
называют конечной схемой. В ней вероятность однозначно определяется 
элементарными вероятностями. Во многих случаях конечная схема служит 
хорошей математической моделью случайных явлений. Различные частные 
случаи общей математической модели случайных явлений часто называют 
схемами, указывая их характерные особенности (конечная схема, схема 
независимых испытаний, …). Рассмотренный выше частный случай 
конечной схемы (с равновозможными исходами) служит хорошей 
математической моделью случайных явлений из области азартных игр, 
лотерей, выборочного контроля, выборочных статистических 
исследований и т. д. 
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Для подсчета количества исходов в формуле классической вероятности 
оказываются полезными различные комбинаторные формулы. Приведем 
основные из них. 

Из конечного множества { }naaa ,,, 21 K , состоящего из n различных 
элементов, можно образовать различные наборы, состоящие из m (m < n) 
элементов. Упорядоченные наборы называют размещениями, а 
неупорядоченные – сочетаниями. Размещения из n элементов по n 
называют перестановками. Различные перестановки содержат одни и те 
же элементы, расположенные в разном порядке. 

Число размещений которое можно образовать, выбирая различными 
способами m элементов из n, обозначают m

nA  и определяют по формуле 
)1()1( +−−= mnnnAm

n K . 
Число сочетаний, обозначают символом m

nC  и определяют по формуле 

)!(!
!

!
)1)(1(

mnm
n

m
mnnnC m

n −
=

+−−
= . 

 
Число перестановок nP  находят по формуле 

!nPn =  
 

Примеры для вычисления вероятностей событий 
 
Пример 1. В первом ящике находится 10 бракованных и 15 годных 
деталей, которые тщательно перемешаны. Найти вероятность того, что 

a) извлеченная деталь годная; 
b) три извлеченные детали годные; 
c) из трех извлеченных деталей две годные. 

Решение: В этой задаче имеем дело с конечной схемой равновозможных 
исходов. Поэтому возможно применение классического определения 
вероятности 

a) 
5
3

25
15)( ==AP ; 

b) 
460
91

232425
131415

321
232425

321
131415

)(
3
25

3
15 =

⋅⋅
⋅⋅

=

⋅⋅
⋅⋅
⋅⋅
⋅⋅

==
C
CAP ; 

c) 
46
21

232425
3101415

321
232425
1

10
21
1415

)(
3
25

1
10

2
15 =

⋅⋅
⋅⋅⋅

=

⋅⋅
⋅⋅

⋅
⋅
⋅

=
⋅

=
C

CCAP . 
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Пример 2. Группа студентов из m человек садится в пригородный 
электропоезд, насчитывающий mn ≥  вагонов. Каждый из студентов 
выбирает свой вагон случайно и с одинаковой вероятностью оказывается в 
любом из вагонов. Какова вероятность того, что все они попадут в разные 
вагоны? 
Решение. Задача на конечную схему равновозможных исходов. Каждый 
студент может выбрать один из n вагонов, поэтому число всех возможных 
комбинаций равно mn . Благоприятствующие исходы представляют собой 
размещения m элементов из n, то есть )1()1( +−−= mnnnAm

n K . Искомая 
вероятность определяется формулой 

mn
mnnnAP )1)(1()( +−−

= . 

 
Замечание. При больших n имеет место асимптотическая формула 
Стирлинга  

nn ennn −⋅⋅≈ π2! . 
 
Пример 3. Из урны, содержащей М белых и N - M черных шаров, наудачу 
извлекается n шаров. Найти вероятность того, что среди выбранных n 
шаров окажется ровно m белых. 
Решение. В данной задаче предполагается, что шары хорошо перемешаны, 
все они одного радиуса, отличаются только цветом, и выбирающий шаров 
не видит. В этом случае разумно воспользоваться конечной схемой 
равновозможных исходов и применить классическое определение 
вероятности. За элементарные события естественно принять любые 
подмножества по n элементов, выбранные из множества N шаров. Число 
таких подмножеств равно n

NÑ .  
Каждый набор шаров, входящий в интересующее нас событие 

(обозначим его А) состоит из двух частей: 1) m  белых шаров и 2) n – m 
черных шаров. Все такие наборы можно получить следующим образом. 
Сначала выберем части наборов из белых шаров, число их m

MÑ . Затем 
отдельно составим части наборов из черных шаров, их число mn

MNÑ −
− . 

Объединение любой части набора из белых шаров с любой частью набора 
из черных шаров дает полный набор шаров, принадлежащий А, количество 
его равно mn

MN
m
M CÑ −

−⋅ . По формуле классической вероятности имеем  

),,()( MNmP
C

CÑ
AP nn

N

mn
MN

m
M =
⋅

=
−
− . 

Замечание. В случае nm >  предполагается, что 0=m
nÑ . Набор чисел 

K),,,1(),,,0( MNPMNP nn  называют гипергеометрическим 
распределением. 
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В теории вероятностей часто математические модели, имеющие 
приложения в самых различных областях, формулируются в терминах 
урновых схем. Например, в приложениях к выборочному контролю роль 
шаров играют N изделий проверяемой партии, число М бракованных 
изделий – число белых шаров. Рассмотрим это приложение на следующем 
примере. 
Пример 4. Вычислить вероятность приемки партии изделий, если объем 
партии равен  N, число дефектных изделий в партии М. Для контроля 
осуществляется выборка n изделий из всей партии, которая и подвергается 
проверке на качество. Партия бракуется, когда в выборке обнаружено       
(с +1) или более дефектных изделий.  
Решение. Естественно предположить, что вероятности извлечения изделий 
из партии равновероятны и извлеченное изделие безошибочно 
классифицируется как годное или брак. Число дефектных изделий  х в 
выборке может рассматриваться как случайная величина, принимающая 
значения 0, 1, 2, …, n. Вероятность приемки партии Р(А) будет равна 
вероятности того, что случайная величина х примет значение меньшее или 
равное с. Применяя схему урн из предыдущей задачи, имеем 

n
N

n
MN

n
N

n
MNM

n C
C

C
CÑ

MNPxP −− =
⋅

===
0

),,0()0( ; 

n
N

n
MNM

n C
CÑ

MNPxP
11

),,1()1(
−
−⋅

=== ; 

n
N

n
MNM

n C
CÑMNPxP

22

),,2()2(
−
−⋅

=== ; 

… 

n
N

cn
MN

c
M

n C
CÑMNcPcxP

−
−⋅

=== ),,()( . 

На основании свойств вероятности, вероятность приемки партии 

)....(1

)(...)1()0()()()(

11

0

cn
MN

c
M

n
MNM

n
MNn

N

c

m

CCCCC
C

cxPxPxPmxPcxPAP

−
−

−
−−

=

⋅++⋅+=

==++=+====≤= ∑
 

Например, вычислить вероятность приемки партии, если N = 200, М = 26, 
n = 10, с = 1. По предыдущей формуле находим 

.62,0)(1)( 9
174

1
26

10
17410

200

=⋅+= CCC
C

AP  

Замечание. Возможна следующая ситуация. Пусть N неизвестное число 
рыб в некотором водоеме. Можно провести отлов М рыб, пометить их и 
пустить обратно. Проведя повторный отлов в количестве n рыб, в котором  
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окажется m помеченных рыб можно из приближенного равенства 
n
m

N
M

≈  

(это равенство можно обосновать) сделать заключение о величине N: 

m
nMN ≈ . Эту схему можно использовать в различных прикладных 

задачах. 
 
Пример 5. Из колоды в 52 карты выбирается наугад одна. Какова 
вероятность, что эта карта будет: 1) червонной масти или король треф?     
2) червонной масти или один из королей? 
Решение. Введем обозначения: А – событие, означающее, что выбрана 
карта червонной масти; В – событие, означающее, что выбранная карта – 
король; С – выбранная карта король треф. Вероятности этих событий 
согласно классическому определению, соответственно равны 

4
1

52
13)( ==AP ;   

13
1

52
4)( ==BP ;   

52
1)( =CP . 

26
7

52
1

4
1)()()( =+=+= CPAPCAP U , 

так как ∅=CAI . 
Так как ∅≠BAI , BAI  - означает событие: взят король червей, то  

13
4

52
1

13
1

4
1)()()()( =−+=−+= BAPBPAPBAP IU . 

Пример 6. Некто выбирает наугад 6 клеток «Спортлото» (6 из 49). Найти 
вероятность того, что он правильно угадает из 6 выигравших номеров :      
A = {ровно три}; В = {ровно четыре}; С = {ровно пять}; D = {все шесть}. 
Решение. Нетрудно убедиться, что задача по структуре полностью 
совпадает с задачей 3 (схемой урн), если считать белые шары  
выигравшими номерами, а черные – не выигравшими. Полагаем N = 49,    
M = 6, m последовательно равны: 3, 4, 5, 6. Применяя формулу задачи 3, 
получим 

2
6
49

3
43

3
6

6 10765,1)6,49,3(),,()( −⋅≈
⋅

===
C

CÑPMNmPAP n ; 

4
6
49

2
43

4
6

6 10686,9)6,49,4(),,()( −⋅≈
⋅

===
C

CÑPMNmPBP n ; 

5
6
49

1
43

5
6

6 10845,1)6,49,5(),,()( −⋅≈
⋅

===
C

CÑPMNmPCP n ; 

8
6
49

6
6

6 10151,7)6,49,6(),,()( −⋅≈===
C
ÑPMNmPDP n . 
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6. Счетное вероятностное пространство 
 

Пусть { }ω=Ω  – счетное множество элементарных событий ω : 
{ }KK ,,,, 21 nωωω=Ω . А – множество всех подмножеств Ω  (множество 

событий). { })(ωP  – набор чисел, удовлетворяющих условиям 

1)(,,0)(
1
∑
∞

=

=Ω∈≥
n

nPÐ ωωω , 

назовем элементарными вероятностями. 
 

Вероятностью события { }KK ,,,, 21 kiiiB ωωω=  называют число Р(В), 
определяемое формулами 

0)(,),()()(
1

=∅∅≠== ∑∑
∞

=∈

PBPPBÐ
k

i
B

k
ωω

ω
.     (6.1) 

Вероятность события В равна сумме ряда, составленного из 
элементарных вероятностей )(ωp , у которых ω входят в В. 

Аксиомы вероятностного пространства легко проверяются. Порядок 
нумерации элементарных событий не влияет на определение, так как 

0)( ≥ωP  и сумма ряда (6.1) не изменится при изменении порядка 
суммирования. Построенное счетное вероятностное пространство 
называют иногда счетной схемой. 
Вероятность Р(В) так же, как и в конечной схеме , однозначно 
определяется вероятностями элементарных событий )(ωP . Конечная схема 
является частным случаем счетной схемы с 0)( =kP ω  при 1+≥ Nk . 
Счетную и конечную схемы называют дискретной схемой или 
дискретным вероятностным пространством.  
 
Пример. Монета подбрасывается до тех пор, пока не выпадет два раза 
подряд одной и той же стороной. Определить вероятность событий: В – 
«опыт закончится за четное число подбрасываний», А – «опыт продлится 
не дольше пяти бросаний».  
Решение. Положим { }2: ≥=Ω nn , где натуральные числа n будем 
интерпретировать как продолжительность эксперимента. Введем 
вероятности элементарных событий р(n). При n подбрасываниях монеты 
возможно n2  различных исходов опыта (равновозможных). Среди них есть 
два исхода, которые соответствуют выпадению монеты впервые два раза 
подряд одной стороной на n – ом испытании. Естественно предположить, 

что )2(2
2
2)( 1 ≥== +− nnP n

n
. Эти числа удовлетворяют условиям 

(аксиомам вероятности) 
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1
2
12)(,2,02)(

22

1 ==≥>= ∑∑
∞

=

∞

=

+−

n
n

n

n nPnnP  (как сумма геометрического 

ряда). Следовательно, можно определить вероятность по формуле (6.1). 
События А и В можно представить в виде { } { }K,8,6,4,2,5,4,3,2 BA . 
Тогда  

Р(А) = Р(2) + Р(3) + Р(4) + Р(5) =
16
5

2
1

2
1

2
1

2
1

432
=+++ . 

3
2

2
11

2
1

2
2
12)2()(

2

2

1 1
2

=
−

⋅=== ∑ ∑
∞

=

∞

=k k
k

kPBP . 
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7. Непрерывное вероятностное пространство. 

Геометрические вероятности 
 

Рассмотрим эксперимент с бесконечным числом исходов, которые 
интерпретируются как выбор наудачу точки из некоторого множества в      
n –  мерном евклидовом пространстве nR . Положим  

( ){ }Guuuuu n ∈==Ω :,,, 21 K , 
где G – квадрируемая область n – мерного евклидова пространства. 
Обозначим А систему квадрируемых подмножеств области G. Из курса 
анализа известно, что сумма, произведение и разность квадрируемых 
фигур являются квадрируемыми фигурами. Следовательно, А является 
алгеброй событий.  
Пусть 0),,,( 21 ≥nuuuf K  – интегрируемая на области G функция и 
интеграл от нее по области G равен 1.  
Вероятностью события А назовем число Р(А) определяемое формулой 

nn
A

duduuuufAP KKK 121 ),,,()( ∫∫= ,                                       (7.1) 

где в правой части находится n – кратный интеграл Римана. Используя 
свойства интегралов, легко проверяется, что функция Р(А) удовлетворяет 
аксиомам теории вероятностей. 
Вместо конечной области G можно рассматривать все n - мерное 
пространство, а интеграл в этом случае понимать как несобственный. 
Функцию Р(А) , определенную на алгебре А, можно продолжить на более 
широкую систему множеств, содержащую счетные суммы и произведения 
событий. Построенное вероятностное пространство иногда называют 
непрерывной вероятностной моделью или непрерывной схемой.   
Рассмотрим частный случай общей непрерывной схемы, положив  

)(
1),,,( 21 Gm

uuuf n =K , 

если Gu∈ , и 0),,,( 21 =nuuuf K , если Gu∉ . 
В этих соотношениях m(G) – мера области G (площадь или объем). При 
таком выборе функции f(u) формула (7.1) запишется в виде 

)(
)()(

Gm
AmAP = . 

Такое определение вероятности называют геометрическим. Его можно 
рассматривать как обобщение классического определения вероятности на 
случай экспериментов с бесконечным (несчетным) числом исходов.  
Пример. На обслуживающее устройство в промежуток времени [0, T] 
должны поступить две заявки. Если разность между моментами  
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поступления заявок меньше t, то вторая заявка теряется. Найти 
вероятность потери заявки. 
Решение.  Пусть t1 и t2 – моменты поступления заявок. Тогда 

{ }TtTttt ≤≤≤≤=Ω 2121 0;0:),( , А – «заявка будет потеряна», и 
{ }tttttA <−= 2121 :),( . Для нахождения искомой вероятности 

воспользуемся геометрическим определением, для чего вычислим 
2)( Tm =Ω  – площадь квадрата со стороной длины Т (множество 

возможных исходов), 22 )()( tTTAm −−=  - площадь заштрихованной 
фигуры (рис.2) (множество исходов, при которых заявка теряется). По 
формуле находим 

2
2

22

)1(1)(
)(
)(

)(
)()(

T
t

T
tTT

S
AS

m
AmAP −−=

−−
=

Ω
=

Ω
= . 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Рис. 2 

 
Замечание. Соответствие выбранной модели случайного явления 
действительности может быть оценено на основе экспериментов.  
 
 

А 

t1 

t2 

t 

t 

T
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8. Вероятность сложных событий 
 

Пусть А и В – некоторые события в вероятностном пространстве. 
Сложное событие может представлять собой объединение, пересечение, 
дополнение и т. п. простых событий. Получим соотношения, связывающие 
вероятность сложного события с вероятностями составляющих его 
простых событий. 
 

Условные вероятности 
При анализе того или иного явления перед исследователем часто 

встает вопрос о том, как влияет на возможность осуществления некоторого 
события А наступление некоторого  другого события В. В теории 
вероятностей характеристикой связи событий А и В служит так называемая 
условная вероятность Р(А/В) события А при условии наступления 
события В, определяемая формулой 

)(
)()/(

BP
ABPBAP = . 

В эксперименте с конечным числом N равновероятных элементарных 
исходов пусть N(B) – число элементарных исходов, приводящих к 
наступлению события В, а N(AB) – число элементарных исходов, 
приводящих к осуществлению и события А и события В. Тогда 

N
BNBP )()( =  и 

N
ABNABP )()( = , 

отсюда получим 
  

)(
)()/(

BN
ABNBAP = . 

Условные вероятности обладают всеми свойствами, присущими обычным 
(безусловным) вероятностям: 
 
1) 1)/(0 ≤≤ BAP  (это свойство очевидно); 
2) Если наступление события В исключает возможность осуществления А 
( ∅=BAI ), то Р(А/В) = 0. 
Доказательство. Если ∅=BAI , то Р(АВ) = 0 и Р(А/В) = 0; 
3) Если событие В ведет к обязательному осуществлению события А 
( AB ⊆ ), то       Р(А/В) = 1. 
Доказательство. Если AB ⊆ , то АВ = В и Р(АВ) = Р(В), откуда Р(А/В) = 1;  
4) Если Событие А есть объединение непересекающихся событий 

)(,, 21 ∑=
k

kAAAA K , то ∑=
k

k BAPBAP )/()/( . 
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Доказательство. Если ∑=

k
kAA , то ∑=

k
k BAAB  и ∑=

k
k BAPABP )()( , 

следовательно, ∑=
k

k BAPBAP )/()/( . 

Поскольку 
)(
)()/(

BP
ABPBAP = , то очевидно, что 

)(
)()/(

AP
ABPABP = . Из этих 

двух равенств получаем 
Р(АВ) = Р(А)Р(В/А) = Р(В)Р(А/В). 

 
 
Правило. Вероятность пересечения событий А и В равна произведению 
вероятности одного из этих событий на условную вероятность другого 
события при предположении, что первое событие произошло. Это правило 
называют иногда принципом умножения вероятностей.  

По индукции принцип умножения вероятностей можно 
распространить на вероятность пересечения событий nAAA ,,, 21 K : 

)/()/()/()(),,,( 12121312121 −= nnn AAAAPAAAPAAPAPAAAP KKK . 
Пример. На рисунке 3 показана цепь, ток в которой может прерваться при 
выходе из строя и элемента «а» и элемента «b». Пусть событие А – выход 
из строя элемента «а», а В – выход из строя элемента «b». Известно, что 
вероятности событий А и В равны: Р(А) = 0,01,    Р(В) = 0,02. При выходе 
из строя элемента «а» условия работы элемента «b» более тяжелые, 
поэтому Р(В/А) = 0,1. Найти вероятность Р(А/В) выхода из строя элемента 
«а» при условии, что элемент «b» неисправен. 
 
 
 
 
 
 
 

Рис. 3 
 
Решение.  Из правила умножения вероятностей имеем  
Р(АВ) = Р(А)Р(В/А) = 1,001,0 ⋅  = 0,001.  
Условную вероятность события А/В находим по формуле 

05,0
02,0
001,0

)(
)()/( ===

BP
ABPBAP . 

Используя понятие условной вероятности, можно получить новые 
формулы, полезные при вычислении вероятности сложных событий. 
 

а 

b 
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9. Формула полной вероятности 
 

Предположим, что некоторое событие А  может наступить только 
при условии появления  одного из событий nHHH ,,, 21 K , образующих 
полную группу несовместных событий, называемых гипотезами. Это 
означает, что А можно представить в виде суммы несовместных событий: 

AHAHAHA nK++= 21 , 
где  Ω=+++ nHHH K21  - достоверное событие.  

По теореме сложения вероятностей можно записать 

).()/()()/()()/(

)(
)(
)()(

)(
)()(

)(
)(

)()()()(

2211

2
1

2
1

1

1

21

nn

n
n

n

n

HPHAPHPHAPHPHAP

HP
HP

AHPHP
HP

AHPHP
HP

AHP
AHPAHPAHPAP

+++=

=++=

=++=

K

K

K

 

Таким образом, получим формулу 

)/()()(
1

kk

n

k
HAPHPAP ∑

=

= . 

Эта формула называется формулой полной вероятности и широко 
применяется в теории вероятностей и ее приложениях. Применимость этой 
формулы можно обосновать тем, что эксперимент со случайным исходом 
распадается на два этапа: в первом «разыгрываются» условия 
эксперимента, во втором – его результат. 
 
Пример 1. На сборочный конвейер поступают детали с трех станков. 
Производительность станков неодинакова. Первый дает 50% программы, 
второй – 30%, а третий – 20%. Если в сборку поступает деталь, сделанная 
на первом станке, то вероятность получения годного узла равна 0,98. Для 
продукции второго и третьего станков соответствующие вероятности 
равны 0,95 и 0,8. Определить вероятность того, что узел, сходящий с 
конвейера годный. 
Решение. Введем обозначения: А – событие, означающее годность узла, 

321 ,, HHH  - события, означающие, что детали сделаны соответственно на 
первом, втором и третьем станках. Тогда 

;2,0)(3,0)(5,0)( 321 === HPHPHP  
.8,0)/(95,0)/(98,0)/( 321 === HAPHAPHAP  

Искомая вероятность по формуле полной вероятности равна 

.935,08,02,095,03,098,05,0)/()()(
3

1
=⋅+⋅+⋅== ∑

=
kk

k
HAPHPAP  
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Пример 2. Пешеход, идущий из некоторого пункта О в пункт А, стоит на 
разветвлении дорог и выбирает наугад один из возможных путей. Схема 
дорог изображена на рисунке. Какова вероятность того, что пешеход 
попадет в пункт А. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Решение. Из схемы видно, что путь пешехода обязательно проходит через 
один из промежуточных пунктов 4321 ,,, BBBB . Обозначим через kB  
событие, состоящее в том, что при своем движении пешеход попадет в 
пункт kB . События 4321 ,,, BBBB  образуют полную систему и очевидно, что 
они равновероятны (по условию один из путей 4321 ,,, OBOBOBOB  
выбирается произвольно). Поэтому  

4
1)()()()( 4321 ==== BPBPBPBP . 

Если пешеход попадет в пункт 1B , то он сможет прийти в пункт А, 
выбрав одно из трех равновозможных направлений движения. Обозначим 
через А событие, состоящее в том, что пешеход приходит в пункт А. Тогда 
условная вероятность прийти в А из пункта 1B  равна  

3
1)/( 1 =BAP . 

Аналогично  

2
1)/( 2 =BAP ;  1)/( 3 =BAP ;  

5
2)/( 4 =BAP . 

По формуле полной вероятности 

120
67)

5
21

2
1

3
1(

4
1)/()()(

4

1
=+++== ∑

=
kk

k
HAPHPAP . 

 

О 

В4 

А 

В3 

В1 

В2 
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10. Формула Байеса 
В прикладных задачах возможна следующая ситуация. На начальной 

стадии изучения какого - либо явления исследователь, обладающий 
определенной квалификацией и опытом подобных прошлых работ, имеет 
некоторое представление о свойствах объекта исследования. В это 
представление входят эмпирические данные, полученные ранее при 
аналогичных исследованиях. В ходе испытания объекта появляется новая 
информация в виде совокупности эмпирических данных, которые 
изменяют представление (вероятностное) о свойствах объекта. Происходит 
пересмотр и переоценка априорного представления. 

Предположим, что до эксперимента о его условиях можно высказать 
ряд гипотез nHHH ,,, 21 K , несовместных и образующих полную группу: 

jiïðèHHHHH jin ≠∅=Ω=+++ ,;21 K . 
Вероятности гипотез до эксперимента (априорные вероятности) известны: 

∑
=

=
n

k
kn HPèHPHPHP

1
21 1)()(,),(),( K  

Эти события (гипотезы) непосредственно не наблюдаемы, но можно 
наблюдать некоторое событие А, с ними связанное, для которого известны 
условные вероятности ),,2,1()/( nkHAP k K= . Вероятности гипотез 
кажутся недостаточно надежными, поэтому для их уточнения проводим 
эксперимент, в результате которого появилось событие А. Требуется 
пересмотреть вероятности гипотез с учетом этого факта, т.е. найти 
«апостериорные» вероятности гипотез.  

Вероятность совместного наступления событий kAH на основании 
правила умножения вероятности равна 

)/()()/()()( kkkk HAPHPAHPAPAHP ⋅=⋅= . 
Отсюда следует 

)(
)/()(

)/(
AP

HAPHP
AHP kk

k

⋅
= . 

Заменяя Р(А) по формуле полной вероятности, получим 
 

)/()(

)/()()/(

1
i

n

i
i

kk
k

HAPHP

HAPHPAHP
⋅

⋅
=
∑
=

 (k = 1, 2, …, n). 

Эта формула называется формулой Байеса. Она решает поставленную 
задачу – позволяет перейти от априорной информации, формализованной в 
виде априорного распределения, к апостериорной путем добавления 
эмпирических данных (распределением вероятностей называют 
соответствие между событиями и их вероятностями). Этот процесс может  
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быть продолжен с получением нового эмпирического результата. По мере 
накопления выборочной информации она начинает преобладать в 
апостериорном распределении. При этом если два исследователя 
располагали различными априорными распределениями (в силу различной 
первоначальной информации); их апостериорные распределения будут 
сближаться. 

Формулы Байеса находят широкое применение при решении проблем 
управления, связанных с принятием административных решений, когда 
приходится сталкиваться с недостаточной информацией о 
закономерностях в экономике и промышленности. По мере накопления 
дополнительной информации производится корректировка решения. 
Одной из таких проблем является принятие окончательного решения при 
входном контроле партии деталей. При этом возможны следующие 
варианты решений: 

1. Принять всю партию, запустив ее в производство. 
2. Проконтролировать каждое изделие в партии, заменяя или исправляя 

при этом дефектные изделия. 
3. Забраковать всю партию. 

Пример 1. Пусть на завод поставляют партии изделий объемом N. 
Обозначим через iB  наличие в партии i бракованных изделий                      
(i = 0, 1, 2, …, l). При контроле из партии случайным образом отбирается n 
изделий. Обозначим через А событие, означающее наличие в выборке 
бракованных изделий. Вероятность обнаружения k бракованных изделий 
среди n отобранных (k = 0, 1, 2, …, m), если во всей партии содержится i 
бракованных изделий, определим по формуле 

n
N

ki
nN

k
n

i C
CCBAP

−
−⋅

=)/( . 

Условную вероятность )/( ABP j  находим по формуле Байеса 
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Числовой пример. Пусть по проведенным ранее выборкам известно, что в 
поставляемых с завода - изготовителя партиях имеется следующее 
распределение количества колец, не удовлетворяющих принятому уровню 
качества. 
Количество бракованных колец в партии 0 1 2 3 
Вероятность наличия в партии i 
бракованных колец )( iBP  

0,5 0,3 0,18 0,02 

При входном контроле партии из 200 колец в выборке объемом 20 единиц 
обнаружено одно поршневое кольцо ниже принятого уровня качества.  
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Оценить вероятность наличия дефектных изделий в партии после входного 
контроля. 
Решение. По условию задачи имеем N = 200, n = 20, k = 1, 5,0)( 0 =BP , 

3,0)( 1 =BP , 18,0)( 2 =BP , 02,0)( 3 =BP .  
Вероятности наличия дефектных изделий в партии будут: 

0)/( 0 =ABP , 

00085.0
)()()(

)()/(
2

1803
1
1802

0
1801

0
1801

1 =
++

=
CBPCBPCBP

CBPABP , 

09129.0
)()()(

)()/(
2

1803
1
1802

0
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1
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2 =
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=
CBPCBPCBP

CBPABP , 

90786.0
)()()(

)()/(
2

1803
1
1802

0
1801

2
1803

3 =
++

=
CBPCBPCBP

CBPABP . 

Переоценка вероятностей позволяет администрации, исходя из 
экономических затрат, либо забраковать партию колец, отправив ее на 
завод - изготовитель, либо произвести разбраковку партии, либо принять 
ее в производство. 
Пример 2. Объект, за которым ведется наблюдение, может быть в одном из 
двух состояний: 1H  - {функционирует}, 2H  - {не функционирует}. 
Априорные вероятности этих состояний: )( 1HP  = 0,7; )( 2HP  = 0,3. 
Имеется два источника информации, которые приносят разноречивые 
сведения о состоянии объекта; первый источник сообщает, что объект не 
функционирует, второй, что функционирует. Первый источник дает 
правильные сведения с вероятностью 0,9, а с вероятностью 0,1, что 
ошибочные. Второй источник менее надежен: он дает правильные 
сведения с вероятностью 0,7, а с вероятностью 0,3 – ошибочные. На основе 
анализа донесений найти новые вероятности гипотез. 
Решение. Обозначим А событие, которое произошло. А = {Первый 
источник сообщил 2H , второй  - 1H }. Условные вероятности этого 
события при гипотезах 1H  и 2H равны 

)/( 1HAP  = Р(первый источник дал неверные сведения, второй – верные) 
= 07,07,01,0 =⋅ , 

)/( 2HAP  = Р(первый источник дал верные сведения, второй – неверные) 
= 27,03,09,0 =⋅ .По формуле Байеса находим 

377,0
27,03,007,07,0

07,07,0)/( 1 =
⋅+⋅

⋅
=AHP , 

623,0)/(1)/( 12 =−= AHPAHP . 
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В результате анализа стала значительно более вероятной 
вторая гипотеза: объект не функционирует. 11. Независимость 

событий 
 

В рамках математической модели понятие независимости удобно 
ввести с помощью понятия условной вероятности. Будем говорить, что 
событие В не зависит от события А , если Р(В/А) = Р(В), Р(А) > 0. 
Пусть событие В не зависит от события А, тогда 

)(
)(

)()(
)(
)()/( AP

BP
BPAP

BP
ABPBAP =

⋅
== . 

Если Р(А) > 0 и Р(В) > 0, то понятие независимости двух событий 
симметрично, то есть, если В не зависит от А, то и А не зависит от В. Для 
независимых событий принцип умножения вероятности принимает вид 

Р(АВ) = Р(А)Р(В). 
Обобщим последний результат. События nAAA ,,, 21 K  назовем взаимно 
независимыми (или просто независимыми), если для всех комбинаций 
индексов niii k ≤<<<≤ K211    (k = 2, 3,…, n) имеем 

)()()()(
2121 kk iiiiii APAPAPAAAP ⋅⋅⋅=⋅⋅⋅ KK . 

Если последнее равенство выполнено только при k = 2, то события 
называют попарно  независимыми. Следует иметь ввиду, что из попарной 
независимости не следует взаимная независимость. 

Теоретико - вероятностная  независимость связана с причинной 
независимостью реальных событий. Пусть при n наблюдениях события А, 
В и АВ произошли BA nn ,  и ABn  раз. Из свойства устойчивости частот 
следуют приближенные равенства 

)(),(),( ABP
n

nBP
n
nAP

n
n ABBA =≈≈ , 
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)()/(

BP
ABP

n
n
n

n

BAP
n
n

B

AB

B

AB ≈≈≈ . 

Следовательно, для событий А и В независимых в теоретико - 
вероятностном смысле из равенства Р(А/В) = Р(А) следует ожидать 
выполнения приближенного равенства  

n
n

n
n A

B

AB ≈ , 

или, что эквивалентно, 
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n
n

n
n

n
n BAAB ⋅≈ . 

Это свойство для причинно - независимых событий А и В установлено 
длительной практикой. При построении математической модели  
используется принцип: причинно - независимые события независимы и в 
теоретико - вероятностном смысле. 
 
Пример. Рассмотрим следующий эксперимент. Из карточной колоды, 
содержащей 36 карт, наугад вытягивается одна карта. Пусть событие 1A  
состоит в том, что это «пика», а событие 2A –  «дама». Является ли 
независимыми эти события? 
Решение.  Так как события – вытягивание карт – равновозможные, то 
согласно классическому определению вероятности (в колоде 9 «пик» и 4 
«дамы») имеем 

9
1

36
4)(;

4
1

36
9)( 21 ==== APAP  . 

Вероятность вытянуть «даму пик» )()(
36
1)( 2121 APAPAAP ⋅== . Таким 

образом, события 1A  и 2A  являются независимыми. 
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12. Схема последовательных испытаний 
 

На практике приходится сталкиваться с задачами, которые можно 
представить в виде многократно повторяющихся испытаний, в результате 
каждого из которых может появиться или не появиться событие А. При 
этом представляет интерес исход не каждого отдельного испытания, а 
общее число появлений события А в результате определенного количества 
испытаний.  

Общая постановка задачи такова: при заданных вероятностях 
каждого из возможных  событий необходимо определить вероятность того, 
что за серию испытаний некоторое событие произойдет определенное 
число раз. 

Если события независимы, то последовательность независимых 
испытаний называют схемой независимых испытаний или 
полиномиальной схемой, частным случаем которой (испытания с двумя 
исходами) является схема Бернулли. Последовательности зависимых 
испытаний называют иногда цепями. Если знание исхода последнего 
испытания позволяет при прогнозе будущего испытания пренебречь 
информацией об исходах прошлых испытаний, то такие испытания 
называют цепями Маркова (цепями без последствий). 
Рассмотрим теоретико - вероятностную модель последовательности 
независимых испытаний. Пусть в каждом испытании может наступить 
один из k исходов (1, 2, …, k) и события, связанные с различными 
испытаниями, причинно - независимые. Результат n испытаний можно 
записать в виде цепочки nxxx ,,, 21 K , где ix  – исход i - ого испытания. За 
множество Ω  можно принять множество всех возможных цепочек 

),,,( 21 nxxx K=ω . Таким образом, { }ω=Ω ,  ),,,( 21 nxxx K=ω , 
{ } nikxi ,,2,1,,,2,1 KK =∈ . 

Событие )(iAm = {в i - ом испытании наступил исход m} можно выразить 
через элементарные события, как подмножество Ω : 

{ }mxxxxiA inm ∈== :),,,()( 21 Kω , 
i = 1, 2, …, n; m = 1, …, k. 
С другой стороны, элементарное событие ),,,( 21 nxxx K=ω  представляется 
как произведение событий )(iAm :  

),,,( 21 nxxx K=ω = )()2()1(
21

nAAA
nxxx ⋅⋅⋅ K . 

Элементарные вероятности )(ωÐ , исходя из независимости событий, 
определим равенством  

)(ωР = 
nxxx ÐÐÐ K

21
,     (12.1) 
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где вероятности исходов отдельных испытаний  

nikriAÐÐ rr KK ,2,1,,2,1)),(( === . 
Удовлетворяют условиям 

∑
=

==≥
k

r
rr PkrÐ

1
1,,2,1,0 K . 

Определение. Последовательностью независимых испытаний называется 
конечная вероятностная схема, в которой вероятности элементарных  
событий определяются формулой (12.1), как произведение вероятностей 
исходов отдельных испытаний. Ее называют еще схемой независимых 
испытаний или полиномиальной схемой. 
Частный случай схемы независимых испытаний, в которой каждое 
испытание может закончиться только одним из двух исходов, называют 
схемой Бернулли. 
Обычно эти исходы называют «успехом» и «неудачей», а их вероятности 
обозначают p и q = 1 – р  ( 10 ≤≤ p ) соответственно. «Успехи» и 
«неудачи» для краткости  обозначают символами 1 и 0 соответственно. В 
схеме Бернулли с n испытаниями имеем 

{ }ω=Ω ,  ),,,( 21 nxxx K=ω ,   { } nixi ,,2,1,1,0 K=∈ . 
Очевидно, что число «успехов» (или число 1) в цепочке ),,,( 21 nxxx K=ω  
равно сумме nxxx +++ K21 . Элементарные вероятности, определенные 
формулой  для схемы Бернулли, имеют вид 

)( 2121)( nn xxxnxxx qpP +++−+++= KKω ; ),,,( 21 nxxx K=ω . 
 
Для схемы Бернулли часто представляет интерес событие 

 mB = {в n испытаниях наступило ровно m успехов}. 
В этом случае элементарная вероятность определяется формулой 
   mnmqpP −=)(ω  при любом mB∈ω . 
Число всех таких исходов совпадает с числом m мест для «1» в цепочке ω , 
оставшиеся места заполняются «0», и определяются формулой m

nC . 
Следовательно, приходим к формуле 
   nmqpCBPmP mnmm

nmn K,1,0,)()( === − , 
где р – вероятность успеха в отдельном испытании. 
События mB (m = 0, 1, …, n), состоящие в различном числе появлений 
события А в n испытаниях, несовместны и образуют полную группу. 
Следовательно, 

1)( 11

00
=+++++== −−

=

−

=
∑∑ nmnmm

n
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n
n
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mnmm
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m
n pqpCpqCqqpCmP KK . 

Правая часть последнего равенства представляет собой члены разложения 
бинома  

1)( 11 =+++++=+ −− nmnmm
n

n
n

nn pqpCpqCqpq KK . 
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Для полиномиальной схемы вероятность ),,( 21 kn mmmP K  того, что в 
испытаниях исход «1» наступит m1 раз, исход «2» – m2 раза, …, исход «k» – 
mk раз, определяется равенством 

km
k

mm

k
kn ppp

mmm
nmmmP K
K

K 21
21

21
21 !!!

!),,( = , 

где pk – вероятность исхода m в отдельном испытании (m = 1, 2, …, k); 
kmmm K,, 21  – целые, неотрицательные числа, удовлетворяющие равенству 

nmmm k =+++ K21 . 
Приведем доказательство этой формулы. Пусть В = {среди n испытаний 
исход «1» появился m1 раз, …, исход «k» – mk раз}. Для любого 
элементарного события  B∈ω  имеем  

km
k

mm pppP K21
21)( =ω . 

Число элементарных событий, входящих в В, несложно подсчитать. Исход 
«1» на m1 местах цепочки ),,,( 21 kxxx K=ω  можно расположить 1m

nC  
способами; исход «2» на оставшихся (n – m1) местах можно расположить 

2

1

m
mnC −  способами и т. д. Таким образом, искомое число элементарных 

событий, входящих в В, равно 
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Следовательно, 
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Равенство доказано. 
Формула Бернулли получается из полиномиальной формулы, если 
положить  

qppppk =−=== 1,,2 21 . 
 Когда вероятность появления события А меняется от испытания к 
испытанию, при вычислении вероятностей возможного числа наступления 
события А в n независимых испытаниях применяется так называемая 
производящая функция )(xnϕ : 
   )())(()( 2211 xpqxpqxpqx nnn +++= Kϕ . 
После перемножения биномов и приведения подобных членов 
коэффициент при xm представляет собой вероятность того, что событие А 
появится ровно m раз в n независимых испытаниях. 
 В заключение отметим, что биномиальное распределение широко 
используется при анализе качества продукции, при описании 
функционирования систем массового обслуживания, в теории стрельбы и 
так далее. Полиномиальное распределение применяется в 
социологических, экономико-социологических, медицинских 
исследованиях. 
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Пример 1. Вероятность выхода за границы поля допуска при обработке 
плунжера на токарном станке равна 0,07. Определить вероятность того, 
что из пяти наудачу отобранных в течении смены деталей у одной размеры 
диаметра не соответствую заданному допуску. 
Решение. Условие задачи удовлетворяет условиям схемы Бернулли. 
Полагая  n = 5, m = 1, p = 0.07, получим 
   2118,093,007,05)07,01()07,0()1( 41511

55 =⋅⋅=−= −CP  
Пример 2. Система, составленная из n блоков, работает исправно, если за 
рассмотренный период выйдет из строя не более двух блоков. Найти 
вероятность безотказной работы системы в предположении, что отказы 
блоков являются независимыми событиями и вероятность отказа каждого 
блока равна p. 
Решение. Для решения задачи в качестве модели воспользуемся схемой 
Бернулли с n испытаниями. Каждое испытание заключается в работе 
одного из блоков за рассматриваемый период. Пусть А = {система работает 
безотказно}. Тогда А = В0 + В1 + В2, где Bm = {выход из строя m блоков} и  

.
2

)1(
)2()1()0()()()()(

221

210

−− −
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=++=++=

nnn

nnn

qpnnnpqq

PPPBPBPBPAP
 

Числовой пример: n = 5, p = 0.1. Тогда  
99144,09,01,0109,01,059,0)( 3245 =⋅⋅+⋅⋅+=AP . 

Пример 3. Вероятность взятия вратарем одиннадцатиметрового штрафного 
удара равна 0,25. Найти вероятность того, что он возьмет хотя бы один мяч 
из четырех. 
Решение. Условие задачи предполагает возможность применения в 
качестве математической модели схемы Бернулли. Пусть А = {вратарь 
возьмет хотя бы один мяч из четырех}, тогда A = {вратарь пропустит все 
четыре мяча}. Следовательно, 

68,075,01)25,01(25,01)0(1)(1)( 4400
44 =−=−⋅⋅−=−=−= CPAPAP . 

Искомая вероятность достаточно далека от 1. 
Пример 4. Вероятность выхода из строя каждого мотора самолета равна q, 
причем моторы портятся независимо один от другого. Самолет может 
продолжать полет в том случае, если работают не менее половины его 
моторов. Для каких значений q двухмоторный самолет следует 
предпочесть четырехмоторному? 
Решение. Вероятность того, что мотор не выйдет из строя, равна p = 1 – q. 
Для решения задачи, в качестве модели применяем схему Бернулли. Пусть 
А = {успешный полет двухмоторного самолета}, В = {успешный полет 
четырехмоторного самолета}, Х – число работающих моторов. Тогда  

2
2 1)0(1)0(1)(1)1()( qPXPAPXPAP −=−==−=−=≥= ; 
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.341)1(41
41)1()0(1

)1()0(1)(1)2()(

4334

34
44

qqqqq
pqqPP

XPXPBPXPBP

+−=−−−=

=−−=−−=

==−=−=−=≥=

 

Для ответа на поставленный вопрос – вероятность успешного полета 
двухмоторного самолета не меньше соответствующей вероятности для 
четырехмоторного, запишем неравенство )()( BPAP ≥  или 

.3411 432 qqq +−≥−  
Решим это неравенство. Перенося все члены неравенства в одну сторону, 
получим 
   034 432 ≤+− qqq  или 0)341( 22 ≤+− qqq . 
Последнее равенство можно записать в виде 

0)31)(1(2 ≤−− qqq . 

При 
3
1,1,0 === qqq  выражение в левой части обращается в ноль, то 

есть два типа самолетов имеют одинаковую вероятность успешного 

полета. Если 1
3
1

<< q , то левая часть неравенства меньше нуля и 

двухмоторные самолеты предпочтительнее четырехмоторных. 
Замечание. На практике вероятность выхода из строя одного мотора много 

меньше 
3
1 . 

Пример 5. В конце смены на контроль поступают четыре партии 
прессованных втулок, различающиеся между собой качеством 
изготовления. Вероятность того, что втулка из первой партии 
удовлетворяет техническим условиям, равна 0,8, из второй партии – 0,7, из 
третьей партии – 0,9, из четвертой партии – 0,95. Контролер отбирает из 
каждой партии по одной втулке. Найти вероятность того, что 
изготовленные за смену партии будут приняты контролером, если 
необходимым условием для этого является наличие среди отобранных не 
менее двух втулок, удовлетворяющих условиям качества. 
Решение. Так как условия испытаний неодинаковы (вероятности того, что 
втулка удовлетворяет техническим условиям, для каждой партии 
различны), то для решения воспользуемся производящей функцией 

.4788,04033,01073,00103,00003,0
)95,005,0)(9,01,0)(7,03,0)(8,02,0()(

432

4

xxxx
xxxxx

++++=

=++++=ϕ
 

Проверка  
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∑
=

=++++=
4

0
4, 14788,04033,01073,00103,00003,0

m
mP . 

Событие А -  присутствие среди отобранных не менее двух втулок, 
удовлетворяющих техническим условиям означает наличие либо двух (А2), 
либо трех (А3), либо четырех (А4) таких втулок среди отобранных.. 
Поскольку события А2, А3, А4, несовместны, то  

Р(А) = Р(А2)+Р(А3)+Р(А4). 
Коэффициенты при х2, х3, х4 в разложении по степеням х производящей 
функции )(4 xϕ  являются соответствующими вероятностями, следовательно 

Р(А) = 0,1073 + 0,4033 + 0,4788 = 0,9894. 
 
Пример 6. Вероятность изготовления на автоматическом станке 
стандартной детали равна 0,7. Определить вероятности возможного числа 
появления бракованных деталей среди пяти отобранных случайным 
образом. 
Решение. По условию n = 5, p = 0.3, q = 0.7. Применяя производящую 
функцию, получим 

5

432

554144
5

3233
5

2322
5

41
5

55
5

16807,0
36015,03087,01323,002835,000243,0

7,03.07,03.07,0
3.07,03,07,03,0)7,03,0()(

x
xxxx

xxCxC
xCxCxx

+

+++++=

=⋅+⋅⋅⋅+⋅⋅⋅+

+⋅⋅⋅+⋅⋅⋅+=+=ϕ

 

Искомые вероятности являются коэффициентами при xm, следовательно,  
Р5(0) = 0,00243; Р5(1) = 0,02835; Р5(2) = 0,1323; Р5(3) = 0,3087; Р5(4) = 
0,36015;  
Р5(5) = 0,16807. 
Проверка: 

∑
=

=+++++=
5

0
5 116807,036015,03087,01323,002835,000243,0)(

m
mP . 

 
Пример 7 . Найти вероятность того, что среди 20 случайных чисел имеется 
ровно 10 четных цифр, две тройки и три семерки. 
Решение. Для решения задачи следует использовать конечную схему 
последовательных независимых испытаний, в каждом из которых 
возможно появление одного из четырех исходов: 1) четная цифра; 2) 
тройка; 3) семерка; 4) все остальное. Вероятности этих исходов равны 

соответственно 
10
3;

10
1;

10
5

4321 ==== pppp . 

По полиномиальной формуле находим 
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 5510
20 )

10
3()

5
1()

2
1(

!5!3!2!10
!20)5,3,2,10( =P . 

 
Замечание. В последовательности независимых испытаний иногда n 
испытаний интерпретируют как размещение n частиц по k = N ячейкам, с 
вероятностью попадания частицы в i – ую  ячейку равной pi (i = 1, 2, …, N). 
 
Пример 8. Рабочий производит с вероятностью 0,9 годное изделие, с 
вероятностью 0,09 – изделие с устранимым браком и с вероятностью 0,01 – 
с неустранимым браком. Произведено 3 изделия. Определить вероятность 
того, что среди них хотя бы одно годное изделие и хотя бы одно с 
устранимым браком. 
Решение. Применяя конечную схему независимых испытаний, найдем 
искомую вероятность. 

.245,001,009,09.0
!0!2!1

!301,009,09,0
!0!1!2

!3

01,009,09,0
!1!1!1

!3)0,2,1()0,1,2()1,1,1(

0202

333

≈⋅⋅⋅+⋅⋅⋅+

+⋅⋅⋅=++= PPPP
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13. Предельные теоремы в схеме Бернулли 
 

При больших значениях n вычисления по формуле Бернулли становятся 
затруднительными. Иногда удается заменить эту формулу какой -  либо 
приближенной асимптотической формулой. 
 
Теорема1. (Пуассона) 
Если ∞→n  и  0→p  так, что ∞<<→ λλ 0,np , то 

λλλ −− =→= e
k

PqpCkP
k

k
knkk

nn !
)()(  

при любом постоянном k = 0, 1, 2, … 
Доказательство. 
Положив nnn λ= , представим вероятность Pn (k) в виде 

.11121111
!

1
!

)1()1()(

k

n

n

n
k
n

kn

n

k

n
n

nn
k

nnnk

nnk
knnnkP
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⎟
⎠
⎞

⎜
⎝
⎛ −⎟
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⎝
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⎝
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⎠
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⎠
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⎝
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Переходя в этом равенстве к пределу при ∞→n , получим  
λλλ −

∞→
== e

k
PkP

k

knn !
)()(lim   

 
Таким образом, при больших n и малых p можно пользоваться 
приближенной формулой 

npe
k

kP n

k
n

n
n =≈ − λλ λ ,

!
)( . 

 
Замечание. При доказательстве теоремы Пуассона использовали 
замечательный предел  

e
n

n

n
=+

∞→
)11(lim . 

 
Пример 1.  Устройство состоит из 1000 элементов, работающих 
независимо друг от друга. Вероятность отказа любого элемента в течение 
времени Т, равна 0,002. Найти вероятность того, что за время Т откажут 
ровно 3 элемента. 
Решение. По условию задачи n = 1000, p = 0,002, k = 3, 2== npnλ . 
Применим формулу Пуассона: 

.18,013534,0
3
4

!3
2)3( 2

3

1000 =⋅=≈ −eP  
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Пример 2. Телефонная станция обслуживает 1000 абонентов. В данном 
интервале времени любой абонент независимо от остальных может сделать 
вызов с вероятностью 0,005. Требуется найти вероятность того, что в 
данном интервале было не более 7 вызовов. 
Решение. Для решения задачи используем формулу Пуассона. Имеем 

5== npnλ . 

.867.0)
5040

5
720
5

120
5

24
5

6
5

2
551(

)5()5()5()5()5()5()5()5()7(
765432

5

76543210

≈+++++++≈

≈+++++++=≤

−e

PPPPPPPPxP
 

 
Теорема 2.(Локальная теорема Муавра – Лапласа) 
 Если вероятность р наступления события А в n независимых 
испытаниях постоянна и отлична от нуля и единицы, то при условии, что 
число испытаний достаточно велико, вероятность того, что в этих 
испытаниях событие А наступит ровно k раз равна 

)(1)( x
npq

kPn ϕ≈ , 

 где  

npq
npkxex

x −
==

−
,

2
1)( 2

2

π
ϕ . 

Доказательство этой теоремы приводить не будем. Отметим только, что 
)()( xx ϕϕ =− . 

 
Пример. Вероятность того, что станок - автомат производит годную 

деталь, равна 
9
8 . За смену было изготовлено 280 деталей. Определить 

вероятность того, что среди них 20 бракованных. 

Решение. Согласно условию задачи имеем n = 280, k = 20, p =
9
1 , q = 

9
8 . 

Находим  

.11,2

9
8

9
1280

9
128020

−=
⋅⋅

⋅−
=

−
=

npq
npkx  

По таблице значений функции )(xϕ  находим 0431,0)11,2()11,2( ==− ϕϕ . 
Искомая вероятность  
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0082,0
2588,5
0431,0)11,2(

9
8

9
1280

1)20(280 ==−
⋅⋅

≈ ϕP . 

 
Локальная теорема Муавра – Лапласа позволяет оценить отдельные 
значения Pn(k) , то есть локальное поведение Pn(k) как функции k при 
больших n. Интегральная  предельная теорема Лапласа позволяет оценить 
вероятность того, что событие А появится в n испытаниях от m1 до m2 раз.  
 
Теорема 3. (Интегральная теорема Муавра – Лапласа) 
 Если вероятность p наступления события А в n независимых 
испытаниях постоянна и отлична от нуля и единицы, то при условии, что 
число испытаний достаточно велико, вероятность того, что в этих 
испытаниях событие А наступит от m1 до m2 раз, приближенно равна  

)()(),( 21 xxmmPn ′Φ−′′Φ≈ , 
 где  

npq
npmx

npq
npmxdzex

x z −
=′′

−
=′=Φ ∫

−
21

0

2 ,,
2
1)(

2

π
. 

Ф(х) –  функция  Лапласа. 
 
Примем эту теорему без доказательства. Значения функции Лапласа Ф(х) 
берем из соответствующих таблиц, при этом Ф(-х) = -Ф(х). 
 
Пример. Вероятность того, что деталь не прошла проверку ОТК равна р = 
0,2. Найти вероятность того, что среди 400 случайно отобранных деталей 
окажется непроверенных от 70 до 100. 
Решение. Из условия задачи имеем p = 0.2, q = 0.8, n = 400, m1 = 70, m2 = 
100. Тогда  

5,2
8,02,0400
2,0400100,25,1

8,02,0400
2,040070

=
⋅⋅
⋅−

=′′−=
⋅⋅
⋅−

=′ xx . 

По интегральной формуле Муавра – Лапласа имеем  

.8882,03944,04938,0
)25,1()5,2()25,1()5,2()100,70(400

=+=
=Φ+Φ=−Φ−Φ≈P

 

 
Интегральная теорема Муавра – Лапласа позволяет оценить близость 
частоты и вероятности. Пусть р – вероятность успеха в схеме Бернулли и   

k – общее число успехов. Частотой успеха называется отношение 
n
k .  
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Оценим вероятность события 
⎭
⎬
⎫

⎩
⎨
⎧

Δ<− P
n
k . Если n достаточно велико, то 

по формуле Лапласа имеем  

)(2
2
1 2

2

∫
Δ

Δ−

−
ΔΦ=≈

≈⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ<

−
<Δ−=⎟

⎠

⎞
⎜
⎝

⎛ Δ<−

hq
n

pq
n

z

pq
ndze

pq
n

npq
npk

pq
nPP

n
kP

π

. 

Пример. Вероятность того, что деталь не стандартна, р = 0,1. Найти 
вероятность того, что среди случайно отобранных 400 деталей 
относительная частота появления нестандартных деталей отклонится от 
вероятности по абсолютной величине не более, чем на 0,03. 
Решение. В качестве математической модели воспользуемся схемой 
Бернулли. По условию задачи имеем n = 400, p = 0,1, q = 0,9, 03,0=Δ . 
Тогда 

9544,04772,02)2(2

)
9,01,0

40003,0(2)(203,01,0
400

=⋅=Φ=

=
⋅

Φ=ΔΦ≈⎟
⎠

⎞
⎜
⎝

⎛ <−
pq
nkP

. 

 
Часто возникает обратная задача: сколько нужно провести испытаний, 

чтобы частота 
n
k  отличалась от вероятности р не больше, чем на Δ  с 

вероятностью α21− , (α - мало)? Такого типа задачи возникают при 
использовании метода Монте – Карло (метод статистических испытаний). 
Идея метода заключается в моделировании случайного процесса или 
последовательных испытаний , вероятностные характеристики которых 
просто связаны с подлежащими вычислению величинами. В таких задачах 
естественно считать р неизвестным. Чтобы подобрать наименьшее n, при 
котором вероятность отклонения будет равна α21− , нужно решить 
уравнение 

α21)(2 −=ΔΦ=⎟
⎠

⎞
⎜
⎝

⎛
Δ<−

pq
nP

n
kP . 

Решение будет зависеть от неизвестного р. От этой зависимости можно 
избавиться, если потребовать, чтобы  

α21−≥⎟
⎠

⎞
⎜
⎝

⎛
Δ<− P

n
kP . 

Тогда используя неравенство 
4
1

≤pq , получим  
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 α21)2(2)(2 0 −=ΔΦ≥ΔΦ≈⎟
⎠

⎞
⎜
⎝

⎛
Δ<− n

pq
nP

n
kP , 

и для определения n  имеем уравнение 
2
21)2(0

α−
=ΔΦ n . По таблице 

можно найти αu , для которых 
2
21)( α

α

−
=Φ u . Тогда αun =Δ2  и 

2

2

4Δ
≥ αun . 

В практических расчетах обычно используют значения α2 , равные 0,05 и 
0,01. Для этих значений соответствующие αu  равны 1,96 и 2,576. 
 
Пример. Вероятность того, что деталь не стандартна, равна  р = 0,1. Найти 
сколько деталей нужно отобрать, чтобы с вероятностью 0,9544 можно 
было утверждать, что относительная частота появления нестандартных 
деталей (среди отобранных) отклонится от постоянной вероятности р по 
абсолютной величине не больше, чем на 0,03. 
Решение. Согласно условиям задачи p = 0,1, q = 0,9, 03,0=Δ . По формуле  

)(2
pq
nP

n
kP ΔΦ≈⎟

⎠

⎞
⎜
⎝

⎛
Δ<−  

находим 

   9544,0)1,0(2)
9,01,0

03,0(2 =Φ=
⋅

Φ nn  . 

Следовательно, 4772,0)1,0( =Φ n . По таблице находим 21,0 =n . Отсюда 
искомое число деталей n = 400. 
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14. Случайные величины. Основные понятия. 

 
До сих пор мы рассматривали случайные события, которые 

качественно характеризуют результат эксперимента. На практике часто 
результат эксперимента представляют количественно в виде некоторой 
действительной величины, которая называется случайной величиной. 

С точки зрения инженерного подхода случайная величина – это 
просто числовое описание исхода случайного эксперимента. Пространство 
событий представляет собой множество всех возможных исходов 
эксперимента. 

При исходе ω  случайная величина Х принимает значение, которое 
можно обозначить Х(ω ). При таком подходе случайная величина – просто 
действительная функция, определенная на пространстве элементарных 
событий.  

Случайные величины обозначают большими буквами латинского 
алфавита X, Y, Z…, а возможные их значения – соответствующими малыми 
буквами x, y, z. Случайная величина, множество возможных значений 
которой конечно или счетно, называется дискретной случайной 
величиной. Например, число дефектных изделий в партии; число вызовов, 
поступающих на телефонную станцию в течение суток; число отказов 
элементов устройства за определенный промежуток времени его работы и 
т. д.  

Случайная величина, способная принимать любые значения из 
некоторого конечного или бесконечного интервала называется 
непрерывной случайной величиной. Например, время безотказной работы 
как отдельных элементов системы, так и всей системы в целом; размеры 
детали, обработанной на токарном станке, сила тока или напряжение в 
электрической сети, температура воздуха в различное время суток и т. д. 

В простейшем случае, когда в результате эксперимента может 
появляться или не появляться событие А, этому случайному событию 
можно поставить в соответствие случайную величину, принимающую 
только два значения 1 или 0 в зависимости от того, произошло или не 
произошло событие А. Тогда вероятность того, что случайная величина 
примет значение, равное 1, совпадает с вероятностью появления события 
А. 

В схеме независимых испытаний Бернулли множество Ω  состоит из 
элементарных событий ),,( 21 nxxx K=ω , где 1=kx , если при k - ом 
испытании произошел успех, и 0=kx  в случае неуспеха. Случайная 
величина nxxxÕ +++= K21)(ω  равна числу успехов при n испытаниях в 
схеме Бернулли. Любую константу С можно рассматривать как частный 
случай случайной величины. Такие случайные величины называют 
вырожденными. 
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Таким образом, если в результате эксперимента может появиться событие из 
конечной  или бесконечной (счетной) совокупности событий, то такой группе 
событий будет соответствовать некоторая дискретная случайная величина, 
возможные значения которой можно пронумеровать с помощью целых чисел. 
Вероятность того, что дискретная случайная величина примет одно из возможных 
значений, равна вероятности появления случайного события, соответствующего 
этому значению. 

Однако понятие случайной величины является более общим, чем 
понятие случайного события. Так, в случае непрерывной случайной 
величины ее возможные значения непрерывно заполняют конечный или 
бесконечный интервал действительной оси. Говорить о вероятности 
данной величины не имеет смысла, так как эта вероятность равна нулю. 
Можно, однако, разбить интервал возможных значений случайной 
величины на конечное число непересекающихся отрезков. Тогда 
совокупность событий, состоящих в том, что случайная величина попадет 
в любой из этих отрезков, образует полную группу. При этом введение 
понятия вероятности того, что значения случайной величины находятся в 
пределах некоторого отрезка, становится совершенно аналогичным 
дискретному случаю. 

Однако для технических приложений обычно нет необходимости 
рассматривать в явном виде пространство событий. Достаточно уметь 
приписывать вероятности различным событиям, связанным с 
рассматриваемыми случайными величинами. 

Правило, согласно которому каждому возможному значению 
дискретной случайной величины или некоторой области значений 
непрерывной случайной величины ставится в соответствие вероятность 
того, что случайная величина примет определенные значения или будет 
находиться в некоторой области интервала возможных значений, 
называется законом распределения вероятностей случайной величины. 

Дискретную случайную величину можно задать таблицей, в одной 
строке которой записаны возможные значения хк, принимаемые случайной 
величиной Х, а в другой – соответствующие им вероятности Рк.  
 
Х1 Х2 … Хк … Хn 
Р1 Р2 … Рк … Рn 

  
Так как объединение всех возможных событий kω , заключающихся в том. 
Что случайная величина Х примет значения, равные хк (к = 1, 2, …, n), есть 
событие достоверное, то имеем условие 

1
1

=∑
=

n

k
kP . 

При графическом изображении закона распределения дискретной 
случайной величины в прямоугольной системе координат по оси абсцисс 
откладывают все возможные значения случайной величины, а по оси 
ординат соответствующие вероятности. Затем строят точки (хк, рк) и 
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соединяют их прямолинейными отрезками. Полученная фигура 
называется многоугольником распределения . 
 
 
 
 
 
 
 
 
 
 
 

Две случайные величины называются независимыми, если закон 
распределения одной из них не зависит от того, какие возможные значения 
приняла другая величина. В противном случае случайные величины 
называют зависимыми. 

Аналитическим выражением законов распределения являются 
функции распределения. Способ определения законов распределения 
вероятностей, указанный выше, однозначен для дискретных случайных 
величин и неоднозначен для непрерывных. В последнем случае остается 
совершенно произвольным правило разбиения интервала на конечное 
число непересекающихся отрезков. Рассмотрим общепринятый подход к 
определению закона распределения, справедливый для случайных величин 
дискретных и непрерывных. В основе этого подхода лежит использование 
так называемой функции распределения. 
 
 

хх1 х2 хк хn…… 

р 
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15. Функция распределения вероятностей 

 
Пусть Х – случайная величина, а х – ее допустимое значение. 

Предположим, что случайная величина может принимать любые 
действительные значения  от ∞−  до ∞+ . 
Это предположение не ограничивает общности, так как изменение 
случайной величины в ограниченном интервале значений будет означать, 
что вероятность попадания ее в любую область числовой оси вне 
указанного интервала равна нулю. В случае дискретной случайной 
величины, отличные от нуля вероятности соответствуют конечному или 
счетному множеству дискретных точек на числовой оси. 

Используем следующее правило разбиения: фиксируем некоторый 
уровень х, и область возможных  значений случайной величины делится на 
две части. К одной относятся значения Х не превосходящие х, а к другой  – 
остальные. 
Функция   

)()( xXPxF ≤= , 
показывающая как зависит от величины выбранного уровня вероятность 
того, что значения случайной величины не превосходят этот уровень, 
называется функцией распределения вероятностей (иногда ее называют 
интегральной функцией распределения). 

Требование, чтобы функция распределения вероятностей F(x) 
представляла собой вероятность, накладывает на ее свойства 
определенные ограничения. 
 

Свойства функции распределения. 
 
Свойство 1. Функция распределения F(x) есть неотрицательная функция, 
заключенная между нулем и единицей:  

1)(0 ≤≤ xF . 
Это свойство вытекает из определения функции F(x) как вероятности 
события. Функция распределения, как и всякая вероятность, есть величина 
безразмерная. 
Свойство 2. Вероятность попадания случайной величины Х в интервал 
[ )ba,  равна разности значений функции распределения на концах этого 
интервала 

)()()( aFbFbXaP −=<≤ . 
Доказательство. Рассмотрим три события: событие А, состоящее в том, 
что X < b, событие В, состоящее в том, что X < a, событие С, состоящее в 
том, что bXa <≤ . Можно записать, что 

)()()( bFbXPAP =<= , 
)()()( aFaXPBP =<= , 

)()( bXaPCP <≤= . 
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Очевидно, что событие А представляет собой сумму двух 
несовместных событий В и С: А = В + С. По теореме сложения 
вероятностей имеем: Р(А) = Р(В) + Р(С) или )()()( bXаPaFbF <≤+= , 
откуда )()()( aFbFbXаP −=<≤ , что и требовалось доказать. 
 
Следствие. Вероятность того, что непрерывная случайная величина 
примет заданное значение, равна нулю. 

Для доказательства рассмотрим промежуток[ ), ε+àà , который 
будем неограниченно уменьшать 0→ε . Из свойства 2 функции 
распределения следует  

0)]()([lim)(lim)(
00

=−+=+<≤==
→→

aFaFaXaPaXP εε
εε

. 

Для непрерывной в точке а функции F(x) этот предел равен нулю. Если же 
в точке а функция имеет разрыв, то предел равен значению скачка 
функции F (x) в точке а. 
Вывод, что вероятность любого отдельного значения непрерывной 
случайной величины равна нулю, на первый взгляд кажется 
парадоксальным, так как события, вероятность которых равна нулю, 
рассматривались нами как невозможные. Мы же получили, что нулевой 
вероятностью обладают не только невозможные, но и возможные события. 
Однако этот вывод хорошо согласуется со статистическим определением 
вероятности события, по которому частота появления события при 
большом числе испытаний не равна, а только приближается к вероятности. 
Поэтому равенство нулю вероятности события означает только, что при 
неограниченном повторении испытаний это событие появляется сколь 
угодно редко и не означает, что данное событие невозможно. 
На основании этого следствия для непрерывной случайной величины 
свойство 2 можно записать без включения в рассматриваемый интервал 
[ )ba,  левого его конца 

)()()( aFbFbXaP −=<< . 
Свойство 3. Функция распределения случайной величины есть 
неубывающая функция, то есть  

)()( 12 xFxF ≥  
при 12 xx ≥ . 
Это свойство следует из того, что  

0)()()( 2112 ≥<<=− xXxPxFxF  
и вероятность события есть неотрицательная величина. 
Свойство 4. Функция распределения F(x) стремится к нулю при 
неограниченном уменьшении Х и стремится к единице при 
неограниченном возрастании Х, то есть 

 0)()(lim =−∞=
−∞→

FxF
x

  
и  
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1)()(lim =+∞=

+∞→
FxF

x
. 

Это свойство очевидно, поскольку при −∞→x , случайное событие 
−∞<X  становится невозможным, а при +∞→x , случайное событие +∞<X  

является достоверным. 
Замечание. В то время как каждая случайная величина однозначно 
определяет функцию распределения, одну и ту же функцию распределения 
могут иметь различные случайные величины.  

Для дискретной случайной величины Х, которая может принимать 
значения nxxx ,,, 21 K , функция распределения имеет вид 

)()( ∑
<

==
xx

i
i

xXPxF , 

где суммирование распространяется на все те значения хi, которые по 
своей величине меньше х. 

Справедливо обратное утверждение. Зная функцию распределения 
вероятностей F(x) можно определить вероятность Р(хк) дискретно 
случайной величины  

)'()'()( 1−−=== kkkk xFxFxXPp , 
где '' 1−<< kkk xxx . 

Иначе говоря, задание закона распределения вероятностей при 
помощи функции распределения позволяет перейти к любой другой его 
форме. 
 
Пример. Дискретная случайная величина Х задана законом распределения 
 

Х 2 4 7 
р 0,5 0,2 0,3 

 
Найти функцию распределения F(x) и начертить ее график. 
Решение. Если х < 2, то величина Х значений меньше 2 не принимает и 

0)()( =≤= xXPxF . 
Если 42 <≤ x , то х может принять значение 2 с вероятностью 0,5. F(x) = 
0,5. 
Если 74 <≤ x , то 7.0)4()2()( ==+== xPxPxF . 
Если 7≥x , то 1)7()4()2()( ==+=+== xPxPxPxF . 

Следовательно 
 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥
<≤
<≤

<

=

.71
;747,0
;425,0

;20

)(

x
x
x

x

xF  

 



 50
 
График этой функции имеет вид 
 
 
 
 
 
 
 
 
 
 
 
 

х

F(х) 

0 2 4 7

0.5
0.7

1
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16. Плотность распределения вероятностей 

 
Хотя функция распределения и дает исчерпывающее описание 

вероятностной модели одной случайной величины, ее форма не всегда 
удобна для выполнения необходимых расчетов. В случае непрерывной и 
дифференцируемой функции распределения (за исключением может быть 
дискретных точек) иногда предпочтительнее использовать не саму 
функцию F(x), а ее производную )()( xFxf ′= , называемую плотностью 
распределения вероятностей. Этот термин становится понятным, если 
рассмотреть непрерывную случайную величину Х в достаточно узких 
границах от х до xx Δ+ . Тогда 

x
xxXxP

x
xFxxFxFxf

xx Δ
Δ+≤<

=
Δ

−Δ+
=′=

→Δ→Δ

)(lim)()(lim)()(
00

. 

Поскольку f(x) – плотность распределения вероятностей, а не сама 
вероятность, то она не должна быть обязательно меньше 1 и может 
принимать любые неотрицательные значения. Иногда f(x) называют 
дифференциальной функцией распределения. Для описания распределения 
вероятностей дискретной случайной величины функция плотности 
распределения неприменима. 
 

Свойства функции плотности распределения. 
 
Свойство 1. Функция f(x) плотности распределения неотрицательна.  

0)( ≥xf . 
Это свойство следует из того, что производная неубывающей функции 
неотрицательна. 
Свойство 2.  Вероятность попадания непрерывной случайной величины Х 
в интервал [ )ba,  равна 

∫=<≤
b

a

dxxfbxaP )()( . 

Доказательство. ∫=−=<≤
b

a

dxxfaFbFbxaP )()()()( . 

Геометрически вероятность )( bxaP <≤  численно равна площади 
криволинейной трапеции, изображенной на рисунке 4. 
 
 
 
 
 
       Рис. 4 
 
            х 

f(х) 

а b 
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Свойство 3. Функция распределения F(x) может быть 
выражена через функцию плотности распределения по формуле 

∫
∞−

=
x

dxxfxF )()( . 

 

Доказательство. Имеем ∫
∞−

=<<−∞=<=
x

dxxfxXPxXPxF )()()()( . 

Свойство 4. Справедливо равенство  

1)( =∫
+∞

∞−

dxxf . 

Доказательство. Полагая в равенстве +∞== ∫
∞−

xdxxfxF
x

)()(  и учитывая, 

что 1)( =+∞F , получим 1)()( ==+∞ ∫
+∞

∞−

dxxfF . 

Геометрически это означает, что площадь, ограниченная кривой 
распределения f(x) и осью абсцисс, равна 1. 
Следует иметь в виду, что функция распределения F(x), как всякая 
вероятность, есть безразмерная величина, а размерность плотности 
распределения f(x) обратна размерности случайной величины.  
 
Пример. Случайная величина подчинена закону распределения с 
плотностью 

⎪
⎩

⎪
⎨

⎧

≥
<≤

<
=

.0
;0sin

;00
)(

π
π

x
xxa

x
xf  

Определить коэффициент а, построить график плотности распределения. 

Найти вероятность попадания случайной величины на участок от 0 до 
2
π . 

Определить интегральную функцию и построить ее график. 
Решение. На основания свойства 4, площадь, ограниченная кривой 
распределения численно равна 

2
112cossin)(

0
0

=⇒==−== ∫∫
+∞

∞−

aaxadxxadxxf
π

π . 

Следовательно, плотность распределения примет вид 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥

<≤

<

=

.0

;0sin
2
1

;00

)(

π

π

x

xx

x

xf  

График плотности распределения изображен на рисунке 5. 
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     Рис. 5 
 

По свойству 2 имеем  

2
1)0cos

2
(cos

2
1cos

2
1sin

2
1)

2
0(

2

0

2
0

=−−=−==<< ∫
ππ

π
π

xdxxXP . 

Для определения интегральной функции воспользуемся свойством 3. 

.cos5,05,0cos
2
1sin

2
1)()(

0
0

xxdxxdxxfxF
x

x
x

−=−=== ∫∫
∞−

 

Таким образом, функция распределения имеет вид 

⎪
⎩

⎪
⎨

⎧

≥
<≤−

<
=

.1
;0cos5.05.0

;00
)(

π
π

x
xx

x
xF  

График ее изображен на рисунке 6. 
 
 
 
 
 
 
 
 
 
 
 
Рис. 6 
 

Для более полного описания формы кривой плотности 
распределения вероятностей используют две характерные величины, 
называемые модой и медианой. 
Модой  М случайной величины называют такое значение х, при котором  

х 

f(х) 

0 

0,5 

2
π

 π

π
2
π

 х 

F(х) 

1 

0 
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f(x) = max.  
Медианой Ме случайной величины называют такое х = Ме, для которого  

)()( MeXPMeXP >=< , 
то есть для которого левая и правая площади под кривой плотности 
вероятности одинаковы. Так как вся площадь, ограниченная кривой 
распределения и осью абсцисс, равна 1, то функция распределения в точке, 
соответствующей медиане, равна 0,5:  

5,0)()( =<= MeXPMeF . 
Бывают распределения одномодальные, двухмодальные и 

многомодальные. Встречаются распределения, которые имеют минимум, 
но не имеют максимум. Такие распределения называют антимодальными.  
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17. Числовые характеристики случайных величин 
 

Закон распределения полностью характеризует случайную величину 
с вероятностной точки зрения. Однако во многих задачах оказывается 
трудно или даже невозможно полностью описать функцию распределения 
вероятностей. 
В то же время для решения многих задач достаточно знать лишь 
некоторые параметры, характеризующие случайную величину с той или 
иной точки зрения. Это напоминает ситуацию, когда взамен описания 
мельчайших подробностей геометрической формы твердого тела 
ограничиваются такими его характеристиками, как длина, ширина, высота, 
объем, момент инерции и т. д. 

В теории вероятностей числовыми характеристиками случайной 
величины служат моменты распределения. Они легко определяются из 
экспериментальных данных и позволяют в общих чертах судить о 
характере случайной величины. 
Для непрерывных случайных величин моменты распределения к – ого 
порядка (к = 1, 2, …) определяются по формуле 

∫
+∞

∞−

= dxxfxXm k
k )()( , 

в предположении, что несобственный интеграл абсолютно сходится, то 
есть что 

∫
+∞

∞−

dxxfx k )(  

имеет конечное значение. В этой формуле выражение f(x) dx можно 
трактовать следующим образом: непрерывная случайная величина Х(х) с 
плотностью распределения вероятностей f(x) принимает значения на 
промежутке от х до xx Δ+ , тогда вероятность этого события можно 
положить равной  xxfxp Δ= )()(  (в силу малости xΔ  можно считать 

dxx =Δ ). Геометрически числа mk можно трактовать как моменты инерции 
соответствующих порядков плоской фигуры ограниченной осью абсцисс и 
кривой плотности вероятностей. 

Если случайная величина дискретна и принимает значения 
nxxx ,,, 21 K  с вероятностями nppp ,,, 21 K , то ее к - й момент 

распределения равен  

i

n

i

k
ik pxXm ∑

=

=
1

)(  

при условии, что ряд в правой части сходится абсолютно. 
Следует иметь ввиду, что характеризовать случайную величину при 
помощи моментов удается не всегда, так как не для всякого распределения 
эти моменты существуют. 
 

Математическое ожидание. 
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Простейшая числовая характеристика случайной величины – момент 
распределения первого порядка, определяющая абсциссу центра тяжести 
плоской фигуры, ограниченной кривой распределения и осью абсцисс, 
называется математическим ожиданием или средним значением 
случайной величины. В соответствии с общим определением моментов 
распределения математическое ожидание непрерывной случайной 
величины Х равно 

∫
+∞

∞−

== dxxfxxMXm )()()(1 , 

а математическое ожидание дискретной случайной величины равно 

i

n

i
i pxxMXm ∑

=

==
1

1 )()( . 

Если интерпретировать случайную величину как изменяющееся случайным образом 
напряжение в электрической сети или ток, то нахождение математического ожидания 
эквивалентно определению их постоянных составляющих. 
 

Некоторые свойства математического ожидания 
 
Свойство 1. Математическое ожидание суммы двух случайных величин 
равно сумме их математических ожиданий:  

М(х + у) = М(х) + М(у). 
Это свойство справедливо как для независимых, так и для зависимых 
случайных величин. Примем его без доказательства. 
Свойство 2. Математическое ожидание произведения двух независимых 
случайных величин равно произведению их математических ожиданий:  

М(ху) = М(х)М(у). 
 Доказывать это свойство не будем. 
Свойство 3. Математическое ожидание постоянной величины 
(неслучайной) равно самой постоянной:  

М(с) = с. 
Доказательство. Постоянную величину с можно рассматривать как 
дискретную случайную величину с единственным значением, которому 
соответствует вероятность р = 1. Следовательно, по определению имеем  
М(с) =1 с= с. 
Свойство 4. Постоянный множитель случайной величины может быть 
вынесен за знак математического ожидания:  

М(сх) = сМ(х). 
Доказательство. Согласно свойствам 2 и 3 имеем  

М(сх) = М(с)М(х)=сМ(х). 
Свойство 5. Математическое ожидание отклонения случайной величины 
от его математического ожидания равно 0. 
Доказательство. Используя 1 и 3 свойства математического ожидания 

имеем М(х – М(х)) = М(х) - М(х) = 0. 
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Пример 1. Найти математическое ожидание числа бракованных изделий в 
выборке из пяти изделий, если случайная величина Х (число бракованных 
изделий), задана рядом распределения. 
 

Хi 0 1 2 3 4 5 
pi 0,2373 0,3955 0,2637 0,0879 0,0146 0,001 

 
Решение. По определению  

.25,1001,050146,04

0879,032637,023955,012373,00)(
1

=⋅+⋅+

+⋅+⋅+⋅+⋅== ∑
=

i

n

i
i pxxM

 

 
Пример 2. Распределение содержания кремния в отливах из чугуна при 
определенном составе шихты таково: 
 

Si% 1,2 1,3 1,4 1,5 1,6 1,7 1,8 1,9 2,0 
p 0,32 0,25 0,14 0,12 0,08 0,05 0,02 0,01 0,01

 
Определить математическое ожидание содержания кремния в отливках для 
данного состава шихты. 
Решение. Случайной величиной Х по условию задачи является содержание 
кремния в отливках из чугуна. Находим: 

%373,101,0201,09,102,08,1
05,07,108,06,112,05,114,04,125,03,132,02,1)(

=⋅+⋅+⋅
+⋅+⋅+⋅+⋅+⋅+⋅=xM

 

Замечание. Если распределение одномодальное и симметричное, то для 
него математическое ожидание, мода и медиана совпадают. 
 

Математическое ожидание функции от случайной величины 
 

На практике встречаются задачи, в которых случайная величина не 
выражается числом, а обладает только качественной характеристикой. 
Например, выпускаемая заводом продукция делится на годную и 
бракованную. Вынутая наугад из колоды карта характеризуется 
наименованием и мастью. Принятый радиолокационный сигнал несет 
информацию о наличии или отсутствии цели и т. п.  Однако возможно 
введение количественной оценки и для величин имеющих лишь 
качественное различие. Будем рассматривать случайную величину как 
результат некоторого эксперимента. Любой эксперимент требует 
определенных затрат и ставится ради достижения определенной цели. 
Исход эксперимента является желательным или нежелательным в 
зависимости от того, насколько достигается поставленная цель. 
Достижение поставленной цели можно рассматривать как выигрыш или 
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выгоду, а не достижение – как  проигрыш или убыток. И выгоду и 
убыток можно выразить числами (например, суммы денег в рублях). 
  Таким образом, каждому исходу эксперимента Xx∈  можно 
поставить в соответствие некоторую численную оценку, то есть 
осуществить отображение ϕ  пространства исходов эксперимента Х на 
множество вещественных чисел R: 

.: RX →ϕ  
Это отображение дает вещественную функцию )(xϕ , определенную на Х, с 
которой можно оперировать как со случайной величиной и, в частности, 
определять ее математическое ожидание. Пусть элементам 

nxxx ,,, 21 K множества Х соответствуют значения функции 
)(,),(),( 21 nxxx ϕϕϕ K , вероятности которых будут те же, что и 

вероятности случайных величин nxxx ,,, 21 K . Следовательно, 
математическое ожидание функции от случайной величины может быть 
найдено по формулам математического ожидания случайной величины 
путем замены х на )(xϕ . Для непрерывной случайной величины  

∫
+∞

∞−

= dxxfxxM )()())(( ϕϕ . 

Для дискретной случайной величины 

)()())((
1

xpxxM
Xx
∑
∈

⋅= ϕϕ . 

Пример. Вероятность того, что выпущенный заводом прибор окажется 
бракованным, равна р. Какова средняя прибыль, приходящаяся на один 
прибор, если а – себестоимость, b – цена продукции. 
Решение. Прибыль, приходящаяся на один прибор равна (b – a), ей 
соответствует вероятность того, что прибор не бракован (1 – р). Обозначая 
среднюю прибыль через Q, находим  

Q = (b – a)(1 – p) – ap = b(1 – p) – a. 
Если рассматривать математическое ожидание как средний выигрыш при 
большом числе экспериментов, то считается, что эксперимент проводить 
целесообразно, если 0)( ≥xM . 

Другая интерпретация математического ожидания относится к пари. 
Предположим, что некоторое событие может произойти с вероятностью р. 
Заключение пари предполагает, что один из его участников согласен 
заплатить сумму b, если событие не произойдет, при условии, что другой 
участник заплатит ему сумму а, если событие произойдет. То есть первый 
участник получает сумму а с вероятностью р и выплачивает сумму b с 
вероятностью 1 – р. Его средний выигрыш 

Q = ap – b(1 – p). 
 

Пари считается справедливым, если средний выигрыш будет равен нулю, 
то есть при условии  
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p
p

b
a −
=

1 . 

 
Дисперсия. Среднеквадратичное отклонение 

 
Разность 

)(xMxx −=Δ  
между случайной величиной и ее средним значением называется  
отклонением случайной величины. 
Моменты распределения вероятностей отклонения случайной величины 
называют центральными и обозначают )(xM ê : 

∫
+∞

∞−

−=Δ= dxxfxMxmxM k
xkk )())(()()( . 

В отличие от моментов )(xmê  относительно координатной оси, которые 
называются начальными, центральные моменты являются моментами 
относительно оси, проходящей через центр тяжести. 

Для дискретной случайной величины центральные моменты 
распределения определяются соответствующими суммами: 

i

n

i

k
ik pxMxxM ∑

=

−=
1

))((()( . 

Если среднее значение случайной величины равно нулю, то x=Δ  и 
центральные моменты распределения совпадают с начальными. Очевидно, 
что центральный момент первого порядка всегда равен нулю. 

Центральный момент распределения второго порядка называется 
дисперсией случайной величины Х и определяется формулами: 
для непрерывной случайной величины 

[ ]22
2 )()())(()()( xMxMdxxfxMxxMxD −=−== ∫

+∞

∞−

; 

для дискретной случайной величины 

i

n

i
i pxMxxMxD ∑

=

−==
1

2
2 ))((()()( . 

Дисперсия характеризует отклонения отдельных значений случайной 
величины от математического ожидания, то есть является мерой рассеяния 
случайной величины. Чем меньше дисперсия, тем более тесно 
концентрируются отдельные значения случайной величины вблизи 
математического ожидания. 

Недостатком дисперсии является то, что она имеет размерность 
квадрата случайной величины. Этого недостатка лишено средне 
квадратичное отклонение случайной величины, которое определяется 
формулой 

)()( xDx =σ . 
Его еще называют стандартным отклонением. 
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В электрических схемах дисперсия часто интерпретируется 

как усредненный по времени квадрат случайного напряжения или тока, 
который оказывается пропорциональным средней мощности, 
выделяющейся на активном сопротивлении, а корень квадратный из этой 
величины представляет собой эффективное значение случайного 
напряжения или тока. 
 

Свойства дисперсии случайной величины 
Свойство 1. Дисперсия неслучайной величины С равна нулю, то есть  

D(C) = 0. 
Доказательство. Так как М(С) = С, то  

[ ] 0)0()()()( 2 ==−=−= ÌÑÑÌÑMÑMÑD . 
Свойство 2. Дисперсия произведения неслучайного множителя на 
случайную величину равна произведению квадрата неслучайного 
множителя на дисперсию этой случайной величины, то есть 

)()( 2 xDÑÑxD = . 
Доказательство. 

)()]([)](([)]([)( 22222 xDCxMxMCxMxCMCxMÑxMÑxD =−=−=−= . 
Свойство 3. Дисперсия суммы (разности) независимых случайных величин 
равна сумме (разности) дисперсий этих величин. 
Доказательство. 

).()()]([)]([
)]([)]([)]([2)]([

))](())([()]([)(

22

22

22

yDxDyMyMxMxM
yMyMyMyMxMxMxMxM

yMyMxMxMyxMyxMyxD

+=−+−=

=−+−⋅−+−=

=−+−=+−+=+

 

Использовали условие  
0)]([)]([ 22 =−=− yMyMxMxM  - 

 свойство 5 математического ожидания. 
Свойство 4. Дисперсия случайной величины равна разности между 
математическим ожиданием квадрата случайной величины Х и квадратом 
ее математического ожидания:  

)()()( 22 xMxMxD −= . 
Доказательство. Используя определение дисперсии и свойства 
математического ожидания, имеем 

).()()()()(2)(
)]()(2[)]([)(

2222

222

xMxMxMxMxMxM
xMxxMxMxMxMxD

−=+−

=+−=−=
 

Пример 1. Вычислить дисперсию числа бракованных изделий для 
распределения. 

Xi 0 1 2 3 4 5 
Pi 0.2373 0.3955 0.2637 0.0879 0.0146 0.001 
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Решение. В предыдущем пункте для этого распределения найдено  
М(х) = 1,25, поэтому по определению дисперсии имеем 

.938,0001,0)25,15(0146,0)25,14(0879,0)25,13(
2637,0)25,12(3955,0)25,11(2373,0)25,10()(

222

222

=⋅−+⋅−+⋅−+

+⋅−+⋅−+⋅−=xD
 

На практике дисперсию удобнее вычислять используя формулу свойства 4. 
Пример 2. Вычислить дисперсию и среднеквадратичное отклонение 
содержания кремния в отливках из чугуна для распределения, 
математическое ожидание которого равно 1,373%. 
Si % 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 
Pi 0.32 0.25 0.14 0.12 0.08 0.05 0.02 0.01 0.01 

 
Решение. Находим математическое ожидание квадрата случайной 
величины 

.9179.101.00.201.09.102.08.1
05,07.108,06.112.05.114.04.125,03.132,02.1)(

222

2222222

=⋅+⋅+⋅+

+⋅+⋅+⋅+⋅+⋅+⋅=xM  

Тогда 
%1811.0)()(.0328.0373.19179.1)()()( 222 ===−=−= xDxxMxMxD σ . 

 
Асимметрия и эксцесс 

Математическое ожидание и дисперсия не отражают всех 
особенностей кривой распределения. Одной из таких особенностей 
является симметрия или асимметрия кривой распределения относительно 
оси, проходящей через тяжести. В любом симметричном распределении 
центральный момент произвольного нечетного порядка равен нулю (это 
следует из их определения). Поэтому простейший из нечетных моментов 
(центральный момент третьего порядка) может в первом приближении 
служить характеристикой асимметрии распределения. Центральный 
момент третьего порядка  

dxxfxMxM )())(( 3
3 ∫

+∞

∞−

−=  

может быть выражен через начальные моменты первых трех порядков:  
.23 3

12133 mmmmM +−=  
За характеристику несимметричности распределения (асимметрии или 
скошенности) принимают безразмерную величину – отношение третьего 
центрального момента к кубу среднего квадратического отклонения: 

3
3

σ
MkA == , 

которая называется коэффициентом асимметрии. 
Центральный момент четвертого порядка при данной дисперсии 

может служить характеристикой удельного веса больших отклонений от 
математического ожидания, то есть определять характер максимума в 
точке М(х) симметричного распределения – островершинность или 
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плосковершинность кривой распределения. В качестве 
характеристики сглаженности кривой распределения используют 
безразмерную величину 

,33
4
4

2
2

4 −=−==
σ

γγ
Mèëè

M
ME  

называемую коэффициентом эксцесса. 
Центральный момент четвертого порядка 4M  может быть выражен 

через начальные моменты следующим образом 
.364 4

12
2
13144 mmmmmmM −+−=  

 
Пример. Случайная величина Х задана плотностью распределения 

⎪⎩

⎪
⎨
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xf  

Найти математическое ожидание, дисперсию, ассиметрию и эксцесс. 
Решение. Находим математическое ожидание 
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Определим  
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Тогда дисперсия определяется формулой 
.15,0)5,1(4,2)()()( 2222 =−=−== xMxMxD σ  

Вычисляем начальные моменты первого, второго, третьего и четвертого 
порядков 

.5,1)(1 == xMm  
.4,2)( 2

2 == xMm  
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xdxxdxxfxxMm  

Центральные моменты третьего и четвертого порядков находим через 
начальные моменты 

.05,05,124,25,13423 33
12133 −=⋅+⋅⋅−=+−= mmmmM  

.0696,0
5,134,25,1645,148571,6364 424

12
2
13144

=
=⋅−⋅⋅+⋅⋅−=−+−= mmmmmmM

 

Таким образом, коэффициент асимметрии будет равен 
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86,03
3874,0

05,0
33

3 −=−
−

==
σ
MA . 

.093,03
3874,0
0696,03

44
4 −=−=−=

σ
ME  

Моментами порядка выше четвертого пользуются редко. 
Введем понятие центрированной и нормированной случайной 

величины. Отклонение случайной величины Х от его математического 
ожидания М(х), то есть 

)(xMXÕ −=
o

 
называется центрированной случайной величиной. 
 
Теорема 1. Математическое ожидание центрированной случайной 

величины )(
o

ÕM  равно нулю, а дисперсия )(2
o

Õσ  равна дисперсии 
случайной величины Х. 
Доказательство. На основании пятого свойства математического 
ожидания имеем  

.0)]([)( =−= xMxÌÕM
o

 
Используя третье и первое свойства дисперсии, получим 

).())(()()]([)( xDxMDxDxMxDÕD =−=−=
o

 
 

Центрирование случайной величины геометрически равносильно 
переносу начала координат в точку, абсцисса которой равна 
математическому ожиданию. 

Нормированной случайной величиной (Т) называется 
центрированная случайная величина, выраженная в долях среднего 
квадратического отклонения 

.
)(

)(
)( x

xMx
x

ÕÒ
σσ
−

==
o

 

Теорема 2. Математическое ожидание нормированной случайной 
величины М(Т) равно нулю, а дисперсия D(T) равна единице. 
Доказательство. На основании четвертого и пятого свойств 
математического ожидания имеем 

.0))((
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1
)(

)()( =−=⎥
⎦

⎤
⎢
⎣

⎡ −
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Используя свойства дисперсии, получим 

,1
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что и требовалось доказать. 
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18. Законы распределения, используемые для описания 

механизмов реальных процессов или систем 
 

18.1.  Биномиальное распределение 
 

Биномиальным распределением является распределение 
вероятностей появления m числа событий в n независимых, в каждом из 
которых вероятность появления события постоянна и равна р. Вероятность 
возможного числа появления события вычисляется по формуле Бернулли 

),,,1,0()()( nmqpCmpmXP mnmm
nn K==== −  

где q = 1 – p. Постоянные n и p, входящие в это выражение, являются 
параметрами биномиального закона распределения. 

Этим законом описывается распределение вероятностей только 
дискретной случайной величины. Возможными значениями случайной 
величины Х являются m = 0, 1, … , n. Биномиальному распределению 
подчиняется, например, число бракованных изделий в выборках из 
неограниченной партии продукции. Биномиальное распределение может 
быть задано в виде таблицы 
 
Х = m 0 1 2 … k … n 

)(mpn  n
n qpC 00  111 −n

n qpC  222 −n
n qpC  knkk

n qpC −   0qpC nn
n  

 
и в виде функции распределения 

⎪
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⎪⎪
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m

mF
mm

n
k

,1

0),(
0,0

)( . 

Найдем числовые показатели случайной величины, подчиняющейся 
биномиальному распределению. Для этого запишем выражения начальных 
моментов до 4 порядка включительно: 

mnmm
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m
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n

m
m qpCmmpxm −
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∑∑ ==
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m
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m
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==
∑∑ ==

0

4

0

4
4 )( .    (18.4) 

Для вычисления сумм в этих формулах продифференцируем несколько раз 
по р выражение 
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mnmm
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n qpCqp −
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∑=+

0
)( . 

В результате получим 
mnmm

n

n

m

n qpmCqpn −−

=

− ∑=+ 1

0

1)( ,        (18.5) 
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2 )1())(1( ,       (18.6) 
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0

3 )2)(1())(2)(1( ,      (18.7)

  
mnmm

n

n

m

n qpCmmmmqpnnnn −−

=

− −−−=+−−− ∑ 4

0

4 )3)(2)(1())(3)(2)(1( (18.8) 

Умножая обе части равенства (18.5) на р, получим 

                             mnmm
n

n

m

n qpmCqpnp −

=

− ∑=+
0

1)( .           (18.9) 

В силу равенства первых частей соотношений (18.1) и (18.9), заключаем 
1

1 )( −+= nqpnpm . 
 
Учитывая, что p + q = 1, имеем npm =1 , или  

M(x) = np. 
Таким образом, математическое ожидание числа появлений события в n 
независимых испытаниях равно произведению числа испытаний на 
вероятность появления события в каждом испытании. 
Умножим обе части равенства (18.6) на 2p : 

mnmm
n

n

m

n qpCmmqppnn −

=

− −=+− ∑ )1()()1(
0
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Учитывая, что p + q = 1, имеем 
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Используя свойства (18.1), (18.2) получим выражение начального момента 
2 порядка 

npnppnm +−= 222
2      (18.10) 

Умножим обе части равенства (18.7) на 3p  
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0 0

23

0

33233 2323

. 
Принимая во внимание равенства (18.1), (18.3) и (18.10), получим 
выражение начального момента третьего порядка 
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npnppnnppnpnm +−++−= 22233233
3 3323 .  (18.11) 

Умножая обе части равенства (18.8) на 4p , получим 
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Учитывая равенства (18.1) – (18.4), (18.10), (18.11), находим 

.77
121866116

222

332334424344
4

npnppn
nppnpnnppnpnpnm

+−+

++−+−+−=
 

Используя связь между центральными и начальными моментами, получим 
выражение для дисперсии и среднеквадратичного отклонения для 
биномиального распределения 

npqnpqxDM ==== σσ ,)(2
2 .    

А также выражения центральных моментов третьего и четвертого 
порядков 

)(3 pqnpqM −= , 
)61(3 222

4 pqnpqqpnM −+= . 
Показатели асимметрии и эксцесса для биномиального распределения 
имеют вид 

npq
pqMA −

==
3
3

σ
 ,    (18.12) 

npq
qpME 613

4
4 −

=−=
σ

.    (18.13) 

Исследуем форму графиков биномиальных распределений. Сначала при 
фиксированном  n и меняющемся  р, затем при фиксированном р и 
возрастающем n. 
На рисунке 7 построены многоугольники биномиального распределения 
при n = 20 и p = 0,1; 0,3; 0,5; 0,7 и 0,9. Особенностью этих распределений 
является то, что вероятность Pn(m) сначала возрастает при увеличении m и 
достигает наибольшего значения при некотором наивероятнейшем 
значении m = m0, которое можно определить из двойного неравенства 

qnpmqnp +≤≤− 0 . 
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Рис. 7 
      
 
          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Рис. 8 
          
 

 
Значение m0 является модой биномиального закона. Если имеются два 
наивероятнейших значения, то распределение является бимодальным. 
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Очевидно, что для любого биномиального распределения 
расстояние между математическим ожиданием и модой не превосходит 
единицы. 
Если np – целое число, то математическое ожидание и мода совпадают. 
После достижения наивероятнейшего значения m0 вероятность Pn(m) 
начинает убывать. Распределение асимметрично, за исключением случая, 
когда р = 0,5. При р < 0,5 асимметрия положительна, при р > 0,5 
асимметрия отрицательна. При увеличении числа испытаний n форма 
многоугольника распределения приближается к симметричной и при 
крайних значениях р (с ростом n асимметрия и эксцесс стремится к нулю, 
что следует из формул (18.12) и (18.13)). Практически график 
биномиального распределения можно считать симметричным при np >= 4. 
На рисунке 8 изображены многоугольники распределения при р = 2/3 и n = 
3; 5; 10. При возрастании n график биномиального распределения 
сдвигается вправо и становится более плоским.  

В заключение отметим, что биномиальное распределение широко используется в 
теории и практике статистического контроля качества продукции, при описании 
функционирования систем массового обслуживания, в теории стрельбы и т. д. 

 
 

18.2. Закон распределения Пуассона 
 

Полезной моделью описания многих физических явлений может 
служить закон распределения Пуассона, действующий во многих 
практических задачах, относящихся к схеме последовательности большого 
числа независимых испытаний (n >>1), когда вероятность появления 
события при одиночном испытании относительно мала, однако 
произведение np стремится к некоторой положительной постоянной 
величине λ  при  

0, →∞→ pn . 
Теорема (Пуассона). Если 0, →∞→ pn , так что λ→np  причем 

∞<< λ0 , то  
λλλ −− =→= e

k
pqpCkp

k
knkk

nn !
)()( . 

Доказательство. Положив nnp λ= , представим вероятность )(kPn  в виде 
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Вычислим пределы сомножителей 
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(использовали второй замечательный предел e
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Таким образом, при 00, →→∞→ qèëèpn  получим 
λλλ −

∞→
== e

k
kpp

k

nn !
)(lim)( . Теорема доказана. 

Формула  
λλλ −= e

k
p

k

!
)( , 

задающая закон распределения Пуассона, описывает число событий k, 
происходящих за одинаковые промежутки времени при условии, что 
события происходят независимо друг от друга с постоянным параметром 
λ , интерпретируемым как среднее число осуществления интересующего 
нас события в единицу времени. 
В прикладных расчетах при больших n и малых р используется 
приближенная формула  

ne
k

kp
k
n

n
λλ −≈

!
)( , 

где npn =λ . 
Закон распределения Пуассона используется для описания числа 

сбоев автоматической линии или числа отказов сложной системы 
(работающих в нормальном режиме) в единицу времени; числа требований 
на обслуживание, поступающих в единицу времени в систему массового 
обслуживания; числа требований на выплату страховых сумм за год; 
статистических закономерностей несчастных случаев и редких 
заболеваний и т. д. 
Особенностью этого закона является то, что он может быть использован и 
в ситуациях, отклоняющихся от вышеописанной схемы его формирования. 
Например, можно допустить, что разные бернуллиевые испытания имеют 
разные вероятности осуществления интересующего нас события 

nppp ,,, 21 K . В этом случае биномиальный закон к такой серии испытаний 

применен быть не может, однако выражение λλλ −= e
k

p
k

!
)(  остается 
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приближенно справедливым, если в него вместо np=λ  подставить 

величину pn=λ , где 
n

ppp
p n+++
=

K21 .  

С прикладной точки зрения, это означает, что анализируемая 
совокупность может состоять из смеси множества разнородных 
подсовокупностей, таких, что при переходе из одной подсовокупности в 
другую меняется доля р содержащихся в них объектов с заданным 
свойством, а следовательно, меняется и среднее число λ  осуществления 
интересующего нас события в единицу времени. 

Закон распределения Пуассона может быть задан в виде ряда 
распределения. 
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Рис. 9 
 
На рисунке 9 приведены многоугольники Пуассона, соответствующие 
различным значениям параметра  λ . 

Найдем числовые показатели распределения Пуассона, используя 
соответствующие формулы. 
Математическое ожидание 
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Для дисперсии найдем математическое ожидание квадрата случайной 
величины. 
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Следовательно, дисперсия случайной величины Х: 
 

.)()()()( 22222 npxMxMxxD ==−+=−== λλλλσ  
Отличительной особенностью этого распределения является равенство 
математического ожидания и дисперсии. Аналогично можно получить 
выражения начальных моментов третьего и четвертого порядков: 

λλλ ++= 23
3 3m  

и  
λλλλ +++= 234

4 76m . 
Используя соотношения между центральными и начальными моментами, 
получим выражения центральных моментов третьего и четвертого 
порядков: 
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Выражения для асимметрии и эксцесса имеют вид 
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Так как параметр λ > 0, то асимметрия и эксцесс распределения Пуассона 
также положительны. 

Встречаются на практике и другие законы распределения 
дискретных случайных величин, кроме рассмотренных. 
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18.3. Равномерное распределение 
 

На практике это распределение встречается тогда, когда среди 
принимаемых случайными величинами значений нет каких - либо 
предпочтительных. В частности, обычно считают, что события, 
происходящие в произвольные моменты времени с равной вероятностью 
могут происходить в любой момент времени. 
Определение. Непрерывная случайная величина Х имеет равномерное 
распределение на интервале [ ]ba, , если на этом интервале плотность 
распределения случайной величины постоянна, а вне его равна нулю, то 
есть 
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где С – const. График плотности f(x) равномерного распределения 
изображен на рисунке 10. 
 
 
 
 
 
 
 
 
        
 
 
 
Рис. 10 

 
Найдем значение постоянной С из условия, что площадь, ограниченная 
кривой распределения, равна единице. 
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Итак, аналитическое выражение равномерного закона распределения имеет 
вид 
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Найдем выражение функции распределения F(х) для равномерного 

закона распределения 
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Таким образом, имеем 
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График функции F(x) изображен на рисунке 11. 
 
 
 
 
 
 
 
 
 
 
 
Рис. 11 
 
Определим основные числовые характеристики случайной величины Х, 
имеющей равномерное распределение. 
Математическое ожидание 

x 

F(x) 
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1 
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Итак, математическое ожидание равномерного распределения находится 
посередине интервала [ ]ba, . В силу симметричности распределения 
медиана величины Х совпадает с математическим ожиданием:  

2
baM å

+
= . 

Моды равномерное распределение не имеет. 
Дисперсию случайной величины Х находим по формуле 
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То есть  
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2abxD −
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 а среднеквадратичное отклонение  
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)( abxD −
==σ . 

В силу симметричности распределения, коэффициент асимметрии 
равномерного распределения равен 0. А = 0. 
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Вероятность попадания случайной величины Х, имеющей равномерное 
распределение, на отрезок [ ]βα , , являющегося частью участка [ ]ba, , 
определяется по формуле 

.1)(
ab

dx
ab

xP
−
−

=
−

=<< ∫
αββα

β

α

 

Примером реальных ситуаций, связанных с необходимостью 
рассмотрения равномерно распределенных случайных величин, могут 
служить: ошибка при снятии показаний с измерительных приборов, если 
производится округление отсчета до ближайшего целого деления; время 
ожидания «обслуживания» при точно периодическом (через каждые Т 
единиц времени) включении (прибытии) « обслуживающего устройства» и 
при случайном поступлении (прибытии) заявки на обслуживание в этом 
интервале; описание погрешностей аналого - цифрового преобразования; 
рассмотрение гармонических колебаний со случайной фазой. Равномерное 
распределение иногда используется в качестве «нулевого приближения» в 
описании априорного распределения анализируемых параметров в так 
называемом байесовом подходе в условиях полного отсутствия априорной 
информации об этом распределении. 
 
 

18.4. Нормальное распределение 
 

Это распределение занимает центральное место в теории и практике 
вероятностно-статистических исследований. Механизм формирования 
нормально распределенных случайных величин заключается в следующем. 
Значение исследуемой непрерывной случайной величины формируется 
под воздействием большого числа независимых случайных факторов, 
причем сила воздействия каждого отдельного фактора мала и не может 
превалировать в среде остальных, а характер воздействия – аддитивный. 
Главной особенностью нормального закона распределения является то, что 
он является предельным законом, к которому приближаются другие 
законы распределения.  
Важность нормального закона распределения определяется рядом причин: 

1. Такое распределение служит хорошей математической моделью для 
ряда наблюдаемых случайных явлений, и этот факт можно строго 
доказать для многих ситуаций. 

2. Нормальное распределение принадлежит к числу немногих, 
позволяющих описывать ситуации с произвольным числом 
случайных величин. 

3. Любые линейные комбинации нормальных случайных величин 
также являются нормальными. Для большинства других случайных 
величин это утверждение не справедливо.  
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4. Нормальный (гауссовский) случайный процесс может 

быть полностью описан (в статистическом смысле) при помощи 
только первого и второго моментов. Для других процессов это 
утверждение не верно. 

5. Исчерпывающий статистический анализ в ходе системного анализа 
как для линейных, так и для нелинейных преобразований случайных 
прочесов часто удается выполнить, только если эти процессы 
нормальные (гауссовские). 

 
Функция плотности нормального закона распределения имеет вид 
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    Рис. 12 
 
 
 
 
 
 
 
 
 
 
 
            
        Рис. 13 
 
Графики плотности и функции распределения вероятностей нормального 
закона приведены на рисунках 12 и 13. График плотности нормального 
распределения называют нормальной кривой. Она представляет собой 
колоколообразную фигуру, симметричную относительно прямой х = а и 
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асимптотически приближающуюся к оси абсцисс при ±∞→x . Как 
следует из определения, нормальный закон распределения определяется 
двумя параметрами а и σ . 
Найдем математическое ожидание и дисперсию случайной величины, 
подчиняющейся нормальному закону. 
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Так как  
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(под знаком интеграла с симметричными пределами стоит нечетная 
функция),  
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Итак, имеем  
М(х) = а. 
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Первое слагаемое  
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так как экспонента растет быстрее, чем (х – а) при ±∞→x .  
Второе слагаемое  
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Таким образом, имеем  
2)(,)( σ== xDaxM . 
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Свойства нормального распределения 
 
Свойство 1. Функция плотности нормального распределения в точке х = а 
имеет максимум, равный  

πσ 2
1)( =af . 

Доказательство. Находим первую производную  
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так как при х < а значение 0)( >′ xf , а при х > а значение 0)( <′ xf , то при   
х = а функция f(x) имеет максимум. 
Свойство 2. График функции плотности f(x) симметричен относительно 
прямой, проходящей через точку а: х = а. 
Из этого свойства следует равенство для нормально распределенной 
случайной величины моды, медианы и математического ожидания. 
Свойство 3. Кривая распределения имеет две точки перегиба с 
координатами 
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 При σ+= ax  и σ−= ax  вторая производная обращается в нуль, а при 
переходе через эти точки она меняет знак, то есть это точки перегиба. 
Свойство 4. Нечетные центральные моменты нормального распределения 
равны нулю. 
Доказательство. Рассмотрим центральный момент )(xM k  
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Интегрируя это выражение по частям, имеем: 
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Из этой формулы следует, что центральные моменты нечетных 
порядков равны нулю, поскольку 0)(1 =xM . 
Получим выражения центральных моментов четного порядка: 

6
6

4
4

2
2 15)(,3)(,)( σσσ === xÌxÌxM . 

Свойство 5. Коэффициенты асимметрии и эксцесса нормального 
распределения равны нулю. 
Доказательство. Действительно  
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4
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3 =−===
σσ

xMExMA . 

Важность вычисления этих коэффициентов для эмпирических рядов 
распределения следует из того, что они характеризуют скошенность и 
крутость данного ряда по сравнению с нормальным. 

При изменении параметра а форма нормальной кривой не 
изменяется, график кривой сдвигается влево или вправо. При изменении 
же параметра σ  меняется форма кривой. С возрастанием σ  максимальная 
ордината кривой распределения уменьшается, а с уменьшением σ  - 
возрастает. Так площадь, ограниченная кривой распределения и осью 
абсцисс, равна единице, то с ростом σ  кривая распределения сжимается к 
оси абсцисс и растягивается вдоль нее, с уменьшением σ  нормальная 
кривая растягивается вдоль оси ординат ( рис. 14). 
 
 
 
                   321 σσσ <<  
 
 
 
 
 
 
 
Рис. 14 
 
Функция плотности распределения с параметрами  а = 0, σ  = 1 называется 
нормированной плотностью, а ее график нормированной нормальной 
кривой. Ее можно представить как кривую распределения нормированной 
случайной величины  

σ
)(xMxT −

= . 

Эту величину используют для расчета теоретической кривой 
распределения, соответствующей данному эмпирическому ряду.  
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Поскольку площадь под кривой  f(x) равна единице, ее 

используют для определения единичного импульса (или дельта – 
функции), устремив 0→σ , то есть 
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В этом случае дельта – функция оказывается бесконечно 
дифференцируемой. 

Вероятность попадания в заданный интервал 
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функция Лапласа, ее значения табулированы. Функция Лапласа нечетная 
функция, то есть Ф(-х) = Ф(х). 
Окончательно получим: 
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Если промежуток [ ]21; xx симметричен относительно точки а, то 
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В частности при σα 3= , получим 
9973,049865,02)3(2)3( =⋅==<− ÔaXP σ , 



 81
то есть вероятность того, что абсолютная величина отклонения 
превысит утроенное среднее квадратичное отклонение, очень мала. 
Практически такие события можно считать невозможными. В этом состоит 
правило трех сигм. 
 
Пример 1. Найти вероятность того, что емкость конденсатора будет 
находиться в пределах )02,02,0( ± мкф, если случайная величина – 
значение емкости – распределена по нормальному закону с центром 
распределения     а = 0,2 мкф, а σ  = 0,01мкф. 

Решение. 9544,0)2(2)
01,0
02,0(2)02,02,0( ===<− ÔÔXP . 

Пример 2. Размер детали задан полем допуска 10 – 12 мм. Оказалось, что 
средний размер деталей равен 11,4 мм, а среднее квадратичное отклонение 
0,7 мм. Считая, что размер детали подчиняется нормальному закону, 
определить вероятность появления брака по заниженному и по 
завышенному размеру. 
Решение.  По условию задачи имеем М(х) = а = 11,4; σ  = 0,7 мм. Нижняя 
граница поля допуска 10 мм, верхняя – 12 мм. Браком по заниженному 
размеру является деталь с размером, выходящим за нижнюю границу 
допуска. Искомая вероятность будет равна 
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Аналогично находим 
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Как уже отмечалось выше, нормальный закон распределения широко 

используется в экономике, технике, медицине, биологии и т. д. Однако 
кроме этого нормальное распределение имеет большое теоретическое 
значение: с его помощью выведен целый ряд других важных 
распределений, построены различные статистические критерии и т. п. ( 2χ , 
t и F – распределения и опирающиеся на них критерии). 
 
 

18.5. Показательное распределение 
 

Имеется широкий круг задач, связанных со случайными величинами, 
характеризующими длительность жизни элемента, сложной системы или 



 82
индивидуума (задачи теории надежности, анализ коэффициентов 
смертности в демографии и т. д.). В этих задачах важной характеристикой 
является интенсивность отказа (коэффициент смертности) )(tλ  
исследуемых элементов. Введем его следующим образом. 
Пусть А – событие, обозначающее безотказную работу объекта на 
промежутке времени (0, t); В – событие, обозначающее безотказную работу 
на промежутке (t, t1). Тогда вероятность того, что объект не откажет на 
промежутке времени (t, t1), если он безотказно проработал до момента 
времени t, есть условная вероятность 

)(
)(

)(
)()(),( 1

1 tP
tP

AP
BAPABPttP ===    (18.14) 

Так как событие АВ обозначает безотказную работу элемента на (0, t1). 
Вероятность отказа на (t, t1) выразится следующим образом 

)(
)()(),(1),(),( 1

111 tP
tPtPttPttPttQ −

=−== . 

Положим теперь  
ttt Δ+=1  

и устремим tΔ  к нулю. Тогда 

)(
)(
)(

)(
)()(),( tot

tP
tP

tP
ttPtPtttQ Δ+Δ

′
−=

Δ+−
=Δ+ , 

где 0)( →Δto  при 0→Δt .  
Введем обозначение 

                
)(
)()(

tP
tPt

′
−=λ .     (18.15) 

Эта величина )(tλ  является локальной характеристикой надежности и 
называется интенсивностью отказов. Физический смысл )(tλ  заключается 
в том, что она есть вероятность того, что объект, проработавший 
безотказно до момента t, откажет в последующую единицу времени (если 
эта единица мала). В терминах теории вероятностей )(tλ  есть плотность 
условной вероятности отказа в момент t, при условии, что до этого 
времени объект работал безотказно. Этот показатель широко используют 
при обработке результатов ресурсных испытаний или наблюдений над 
объектом в процессе эксплуатации. 
      
 
 
 
 
 
 
 

t t1 t2 0 

)(tλ
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Рис. 15 
 
 

Типичная кривая изменения интенсивности отказов во времени 
приведена на рис. 15. на ней четко выражены три характерных периода 
работы объекта. Период приработки (обкатки) (0, t1) связан с наличием 
явных и скрытых дефектов, которые приводят к относительно быстрому 
выходу из строя этих элементов. Период нормальной эксплуатации (t1, t2), 
во время которого происходят главным образом случайные отказы 
(аварии, несчастные случаи и т. п.) Последний период эксплуатации 
(жизни) объекта – период старения и износа, когда необратимые явления 
приводят к ухудшению качества объекта, к его «старению». Каждому 
периоду соответствует свой вид функции )(tλ . На участке нормальной 
эксплуатации во многих случаях интенсивность отказов постоянна. 
Если интенсивность отказов )(tλ  задана, то соотношение (18.15) можно 
рассматривать как дифференциальное уравнение относительно функции 
P(t). Решая его, получим 

∫−
=

t

dtt

ePtP 0

)(

)0()(
λ

. 
Если Р(0) = 1, то  

∫−
=

t

dtt

etP 0

)(

)(
λ

. 
 
 

Рассмотрим частный случай, когда интенсивность отказов constt == λλ )( . 
Тогда 

tetP λ−=)( . 
Получаем так называемый экспоненциальный закон надежности. Для него 
вероятность отказа за время t равна 

tetFtQ λ−−== 1)()( . 
Функция плотности вероятности отказов 

tetftq λλ −== )()( . 
Экспоненциальный закон надежности широко применяется в прикладных 
расчетах благодаря его физической простоте и удобству использования. 
Для этого закона справедливо следующее важное свойство: если 
вероятность безотказной работы на данном интервале не зависит от 
времени предшествующей работы, а только от длины интервала, то этот 
закон обязательно будет экспоненциальным. Это свойство является 
необходимым и достаточным. Необходимость следует из того, что 
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вероятность безотказной работы на промежутке ),( τ+tt  по формуле 
(18.14) равна 

λτ
λ

τλττ −

−

+−

==
+

=+ e
e

e
tP

tPttP
t

t )(

)(
)(),( . 

Экспоненциальный закон описывает надежность нестареющих объектов, 
отказ которых носит случайный характер, обусловленный сочетанием 
внешних и внутренних факторов. Например, прокол шины при случайном 
наезде на гвоздь при условии, что износ мало влияет на ее сопротивление 
проколу. Если данные эксплуатации хорошо согласуются с 
экспоненциальным законом, то можно утверждать, что характеристики 
(механические и т. п.) на участке, где const=λ , почти не изменяются. Это 
имеет большое значение для анализа состояния объекта исследования. 

В общем случае показательным (экспоненциальным) называют 
распределение вероятностей непрерывной случайной величины Х, которое 
описывается плотностью 

⎩
⎨
⎧

≥
<

=
− .0

,00
)(

xe
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xf xλλ
 

где λ  - постоянная положительная величина. 
Это распределение определяется одним параметром λ . Функция 
распределения имеет вид 

⎩
⎨
⎧

≥−
<

=
− .01

,00
)(

xe
x

xF xλ  

Графики функций f(x) и F(x) приведены на рисунках 16 и 17. 
 
 
 
 
 
 
 
 
 
 

Рис. 16     Рис. 17 
 
 
Найдем числовые характеристики показательного распределения  

x 0 

f(x) 

1 

x 0 

F(x) 

1 
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Таким образом,  

λ
1)( =xM  

и  

2

1)(
λ

=xD . 

Аналогично определяются асимметрия А = 2 и эксцесс Е = 6 
показательного распределения (вычисления провести самостоятельно). 
 

19. Предельные теоремы теории вероятностей 
 
  Предельные теоремы устанавливают зависимость между 
случайностью и необходимостью, что позволяет научно предсказывать 
результаты будущих испытаний, связанных с изучением закономерностей 
массовых случайных явлений. Они делятся на две группы, одна из которых 
получила название закона больших чисел, а другая – центральной 
предельной теоремы.  

Закон больших чисел состоит из нескольких теорем, в которых 
доказывается приближение средних характеристик при соблюдении 
определенных условий к некоторым постоянным значениям. 

Смысл центральной предельной теоремы состоит в том, что при 
определении большого числа (n) случайных слагаемых с увеличением n 
все менее ощущается неконтролируемый разброс в их значениях, так  что в 
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пределе ( ∞→n ) разброс исчезает вовсе или, как принято говорить, 
случайная величина вырождается в неслучайную. 
 

Закон больших чисел 
Содержательные результаты в теории вероятностей могут быть 

получены, если рассматривать не одно событие или случайную величину, а 
много. О большом числе случайных событий можно сделать некоторые 
практически достоверные выводы. Аппарат, позволяющий получать 
выводы о вероятностях разных событий, связанных с большим числом 
случайных величин включает в себя теорему о том, что дисперсия суммы 
независимых случайных величин равна сумме их дисперсий, и неравенство 
Чебышева. 
 

Неравенство Чебышева 
Пусть случайная величина Х имеет конечные математическое ожидание 
М(х) и дисперсию D(x). Если дисперсия мала, то большие отклонения Х от 
М(х) маловероятны (дисперсия есть мера отклонения случайной величины 
от математического ожидания). Этот факт выражается теоремой. 
Теорема. Вероятность того, что отклонение случайной величины Х, 
имеющей конечные М(х) и D(x), от ее математического ожидания М(х) по 
абсолютной величине превзойдет любое наперед заданное положительное 

число ε  > 0, меньше, чем 
2

)(
ε

xD , то есть  

2

)())((
ε

ε xDxMxP <>− . 

Это неравенство называется неравенством Чебышева. 
Доказательство. Рассмотрим промежуток оси ОХ, для которого  

ε>− )(xMx . 
В нем  

[ ] 2)( ε>− xMx . 
Откуда  

[ ] 1)(
2

>
−
ε

xMx  

или  
[ ] )()()(

2
xfxMxxf

ε
−

≤ , 

 где 0)( ≥xf  – плотность распределения случайной величины Х. Тогда 
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Что и требовалось доказать (в случае дискретного признака доказательство 
проводится аналогично с заменой f(x) dx вероятностями Рk, а интегралов – 
соответствующими суммами). 

Утверждение, содержащееся в неравенстве Чебышева, опирается 
только на значение дисперсии, не используя сведения о конкретном виде 
закона распределения, поэтому дает лишь грубые оценки сверху для 
вероятностей событий вида  

[ ] 2)( ε>− xMx . 
Например, если положить ε  = 3σ , то используя неравенство Чебышева, 
получим 

( )
( ))(.

9
1

3
))(( 2

2

2

xDxMxP ==≤>− σ
σ
σε . 

Если полагать, что Х подчиняется нормальному закону распределения, то 
значение этой же вероятности, вычисленное с помощью таблиц равно 
0,0027, что в 40 раз меньше ее оценки, полученной на основании 
неравенства Чебышева. В то же время следует иметь в виду, что 
вероятности рассматриваемых событий не могут превышать значений, 
вычисленных по неравенству Чебышева ни при каком законе 
распределения. 
 
Замечание. Если в неравенстве Чебышева положить  

У = Х – М(Х), 
то  

D(X) = MY2 
и это неравенство примет вид  

2

2

)(
ε

ε MYYP <> . 

Пример 1. Для правильной организации сборки узла необходимо оценить 
вероятность, с которой размеры деталей отклоняются от середины поля 
допуска не более чем на 2 мм. Известно, что середина поля допуска 
совпадает с математическим ожиданием размеров обрабатываемых 
деталей, а среднее квадратическое отклонение равно 0,25 мм. 
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Решение.  По условию задачи имеем  ε  = 2 мм, )(xσ  = 0,25 мм. 
Используя неравенство Чебышева, получим 
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ε
σxMxP  

 

Закон больших чисел в форме Чебышева 
 

Давно замечено, что хотя результаты отдельных измерений 
nxxx ,,, 21 K  могут колебаться довольно значительно, их среднее 

арифметическое 
n

xxx n,,, 21 K  обнаруживает большую устойчивость. На 

этом экспериментальном факте устойчивости частот основаны все 
применения теории вероятностей. Но раз это явление имеет место в 
действительности, то в математической модели, с помощью которой 
изучаются случайные явления , должна существовать отражающая этот 
факт теорема. В условии теоремы вводятся  некоторые ограничения на 
случайные величины nxxx ,,, 21 K . Одна группа ограничений включает 
одинаковость распределений всех случайных величин или одинаковость 
математических ожиданий aMxMxMx n ==== K21  и что дисперсии 
случайных величин ограничены одним и тем же числом  

KK ,,,2,1, nkcDxk =< .  
Вторая группа  – предположения о независимости величин nxxx ,,, 21 K  (по 
парную независимость), что означает 

)()()()( 2121 nn xDxDxDxxxD +++=+++ KK . 
С учетом этих предположений образуем новую случайную величину  
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как среднюю арифметическую этих случайных величин. Используя 
свойства математического ожидания и дисперсии случайных величин, 
получим 
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Применим к случайной величине x  неравенство Чебышева  

δ
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Выбрав число n членов в средней арифметической, достаточно 
большим, получим, что число  

δ
ε

=
2n

c  

может быть сделано сколь угодно малым. 
Таким образом доказана следующая теорема 
 

Теорема Чебышева 
При достаточно большом числе независимых испытаний  n можно с 

вероятностью, близкой к нулю, утверждать , что абсолютная величина 
разности между средним арифметическим наблюдавшихся значений 
случайной величины Х и математическим ожидание этой величины 
окажется больше заданного числа  ε  > 0, при условии, что случайная 
величина имеет конечную дисперсию: 

δε <>−
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Это утверждение равносильно тому, что   
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= εa
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с возрастанием n, где  
а = М(х). 

Теорема Чебышева позволяет с достаточной точностью по средней 
арифметической судить о математическом ожидании и наоборот. Так, на 
основании теоремы можно утверждать, что если произведено достаточно 
большое количество измерений некоторого параметра прибором без 
систематической погрешности, то средняя арифметическая результатов 
этих измерений сколь угодно мало отличается от истинного значения 
измеряемого параметра. 

Теорема Чебышева распространяется и на случай n попарно 
независимых случайных величин nxxx ,,, 21 K  с различными 
математическими ожиданиями и дисперсиями, то есть справедливо 
соотношение 
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( 11 ε . 

 
Пример. Для определения потребности в жидком металле и сырье 
выборочным путем устанавливают средний вес отливки гильзы к 
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автомобильному двигателю, так как вес отливки, рассчитанный по 
металлической модели отличается от фактического веса. Сколько нужно 
взять отливок, чтобы с вероятностью, большей 0,9 , можно было 
утверждать, что средний вес отобранных отливок отличается от 
расчетного, принятого за математическое ожидание веса, не более чем на 
0,2 кг? 
Решение. Согласно условию задачи, имеем  

)(xσ = 0,45; ε = 0,2; 9,0))(( ><− εxMxP , 
где x  - средний вес отливок. На основании теоремы Чебышева имеем 

)()(,)(1))(( 2
2

xxD
n

xDxMxP σ
ε

ε =−><− . 

Следовательно,  

9.0)(1
2
>−

εn
xD  

 или  

9,0
2,0

45,01
2

2

>
⋅

−
n

. 

Откуда находим  n > 50. 
 
 

Теорема Бернулли 
Теорема Бернулли устанавливает связь между частотой появления 

события и его вероятностью, то есть объясняет эффект устойчивости 
относительных частот. Эта теорема может быть получена как следствие из 
теоремы Чебышева. 
 
Теорема. При достаточно большом числе независимых испытаний 
вероятность того, что частота появления события А в этих испытаниях, 
отличается от его вероятности по абсолютной величине больше, чем на 
любое число ε  > 0, может быть сделана сколь угодно малой, то есть 

δε ≤>− )( p
n
mP . 

Доказательство. Рассмотрим в качестве случайных величин число 
появления события А в n испытаниях Бернулли. Пусть 

⎩
⎨
⎧ −

=
íàñòóïèòíåÀñîáûòèååñëè

èñïûòàíèèìkâíàñòóïèòÀñîáûòèååñëè
xk ,0

,1
 

тогда величины kx  независимы и имеют одинаковое распределение 
вероятностей  

qpxPpxP kk =−==== 1)0(;)1( . 
Очевидно, что  
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∑
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k
kxAn

1
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и частота события А, совпадает со средним арифметическим  

n

x

n
An

n
m

n

k
k∑

=== 1)( . 

Математическое ожидание и дисперсия случайной величины kx  
соответственно равны: 

.)0()1()()(
;)1(01)(

222 pqqpppxxD
pppaxM

kk

k

=⋅−+⋅−==

=−⋅+⋅==

σ
 

В силу независимости испытаний обеспечивается взаимная независимость 
случайных величин nxxx ,,, 21 K , и дисперсии всех величин ограничены 

(
4
1

≤
q
p ), поэтому к величинам { }kx  можно применить теорему Чебышева. 

δεε <>−=>−
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Теорема доказана. 
При решении практических задач иногда бывает необходимо 

оценить вероятность наибольшего отклонения частоты появления события 
от ее ожидаемого значения. Случайной величиной в этом случае является 
число появления события А в n независимых испытаниях: 

nxxxm +++= K21 , 

,)()()(
1 11
∑ ∑∑
= ==

⋅====
n

k

n

k
k

n

k
k pnpxMxMmM  

qpnpqxDxDmD
n

k

n

k
k

n

k
k ⋅⋅==== ∑ ∑∑

= == 1 11
)()()( . 

Используя неравенство Чебышева, получим 

2
1)(

ε
ε npqpnmP −>≤− . 

 
Пример. Из 1000 изделий, отправляемых в сборочный цех, было 
подвергнуто обследованию 200 отобранных случайным образом изделий. 
Среди них оказалось 25 бракованных. Приняв долю бракованных изделий 
среди отобранных за вероятность изготовления бракованного изделия, 
оценить вероятность того, что во всей партии бракованных изделий 
окажется не более 15 % и не менее 10%. 
Решение. Находим вероятность изготовления бракованного изделия 

125,0
200
25

==p . 
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Наибольшее отклонение частоты появления бракованных изделий от 
вероятности р по абсолютной величине равно  

025,0=− p
n
m , 

число испытаний n = 1000. Используя формулу  

2
1)(

ε
ε

n
pqp

n
mP −><− , 

находим  

875,0
025,01000
875,0125,01)025,0(

2
=

⋅
⋅

−><− p
n
mP . 

 
 
 

Принцип практической достоверности и массовые явления 
 

Рассматривая единичное случайное событие А, имеющее вероятность 
Р(А) нельзя высказывать никаких суждений относительно того, наступит 
или нет это событие в данном эксперименте. Исключение составляют 
случаи, когда вероятность события А близка к единице или к нулю. Если 
вероятность Р(А) события А мала (или близка к единице), можно 
утверждать, что в данном единичном эксперименте событие А не 
произойдет (или произойдет). То есть в практической деятельности можно 
руководствоваться следующим принципом: если вероятность Р(А) события 
А мала (или близка к единице), то практически можно поступать так, как 
если бы событие А было невозможным (или достоверным), то есть считать 
событие А практически невозможным (или практически достоверным).  

Ответ на вопрос – насколько малой должна быть вероятность Р(А), 
чтобы событие А можно было считать практически невозможным – может 
дать только практика. Например, если условия эксплуатации прибора 
допускают в случае его поломки замену другим, и вероятность Р(А) = 0,01 
(событие А означает выход прибора из строя), то возможностью выхода 
его из строя можно пренебречь и считать событие А практически 
невозможным. 
Когда условия эксплуатации не допускают замену прибора, а выход его из 
строя влечет за собой серьезные последствия, то вероятностью 0,01 
пренебречь нельзя и нельзя считать практически невозможным событием 
выход прибора из строя. 

Таким образом, в практических применениях теории вероятностей 
особо важную роль играют события с вероятностями, близкими к нулю 
или к единице. Достаточно малую вероятность, при которой событие 
можно считать практически невозможным, называют уровнем 
значимости. На практике, обычно, принимают уровни значимости 
заключенные между 0,01 и 0,05.  
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Следует иметь в виду, что принцип практической достоверности применим 
только к массовым явлениям, а не к одному единственному. 

 

Центральная предельная теорема 
 
Рассмотрим сумму  

nn xxxS +++= K21  
независимых случайных величин nxxx ,,, 21 K , имеющих один и тот же 
закон распределения и принимающих целочисленные значения 

K,2,1,0 ±± . Распределение )( mxPp km ==  каждой из величин nxxx ,,, 21 K  
можно изобразить системой прямоугольников, середина основания 
которых есть точка m, длина основания равна 1, а площадь есть mp . 
Получится совершенно произвольная система прямоугольников, 
подчиненная лишь условию – сумма всех площадей равна единице. 
 
 
 
 
 
 
 
       
Рис. 18 
 
Попытаемся изобразить таким же образом вероятности значений суммы 

nn xxxS +++= K21  при довольно большом n. Нам это не удастся, так как 
даже если случайные величины { }kx  принимали всего два значения 0 и 1, 
то значениями суммы nS  могут быть числа от 0 до n, которые при большом  
n просто не поместятся на рисунке. Возникает необходимость сделать 
линейное преобразование оси абсцисс и вместо значений случайной 
величины nn xxxS +++= K21  откладывать значения величины  

n

nn
n b

aSS −
=* , 

где na  и nb  - некоторые числа, зависящие от n. 
Лаплас обнаружил, что получится удивительное, если положить 

)(,)( 21 knn xMàãäånaxxxMa ==+++= K , 
)(),(,)( 2
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Случайная величина 
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является нормированной суммой с  

1)(,0 ** == nn SDMS . 
Значениями величины *

nS  будут числа  

n
nammxn σ

−
=)( , 

причем для любого целого m  

))(()()( ** mxSP
n
namSPmSP nnnn ==

−
===

σ
. 

Отложим (рис. 19) по оси абсцисс значения )(mxn  и изобразим 
вероятности 

))(()( * mxSPmSP nnn ===  
этих значений прямоугольниками, середины оснований которых лежат в 
точках )(mxn , длины оснований равны расстоянию  

n
mxmx nn σ

1)()1( =−+  

между соседними точками, а площади равны  
))(( * mxSP nn = . 

 
 
 
 
 
 
 
 
 
 
 

 
Рис. 19 

 
 
Высоты этих прямоугольников равны  

))(( * mxSPn nn =⋅σ . 
При этом произойдет удивительное. Верхние основания этих 
прямоугольников почти точно лягут на кривую, задаваемую уравнением 
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Иначе говоря, при ∞→n  имеем 
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При этом очевидно,  

.
2
1))()1((

2
1

1
2
1))(()(

2

)(

2
)(

)(

2

)(

**

22

2

∫∑

∑∑

−

≤≤

−

≤≤

−

≤≤

→−−⋅=

=⋅≈==≤≤

B

A

y

n
BmxA

n

mx

BmxA

x

BmxA
nnn

dyemxmxe

n
emxSPBSAP

n

n

nn

ππ

σπ  

Вводя функцию  

∫
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, 

называемую функцией Лапласа, получим  
)()()( * ÀÔÂÔBSAP n −≈≤≤ . 

Таким образом, мы получили, что для широкого класса независимых 
случайных величин nxxx ,,, 21 K  предельный  ( ∞→n ) закон распределения 
их нормированной суммы вне зависимости от типа распределения 
слагаемых стремится к нормальному закону распределения. В этом и 
заключается смысл центральной предельной теоремы. Она может быть 
строго доказана. 

Центральная предельная теорема дает математически строгое 
описание условий, порождающих механизм нормального закона 
распределения – значение исследуемой непрерывной случайной величины 
формируется под воздействием большого числа независимых случайных 
факторов, сила воздействия каждого из которых не может преобладать 
среди остальных, а характер воздействия – аддитивный. 
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20. Элементы математической статистики 
 

20.1 Математическая статистика, ее сущность и назначение 
 

Рассматривая поведение реальной системы, исследователь получает 
большое число разнообразных фактов и наблюдений, часть из которых 
лежит в основе рассматриваемого явления, а другие являются 
второстепенными. Требуется умение  выявить основные и существенные 
сведения и исключить всю второстепенную информацию. 

Математическая статистика – система основанных на теоретико-
вероятностных моделях понятий, приемов и математических методов, 
предназначенных для сбора систематизации и обработки статистических 
данных с целью получения научных и практических выводов. Одно из 
главных назначений методов математической статистики – обоснованный 
выбор среди множества возможных теоретико-вероятностных моделей 
той, которая наилучшим образом соответствует имеющимся в 
распоряжении исследователя статистическим данным.  

Математическое описание интересующих исследователя связей и 
отношений между реальными элементами анализируемой системы обычно 
основано на одновременном использовании информации двух типов: а) 
априорной информации о природе и характере исследуемых соотношений; 
б) исходных статистических данных, характеризующих процесс и 
результат функционирования анализируемой системы. Главное назначение 
модели – распространить закономерности, подмеченные в выборке на всю 
генеральную совокупность (что является основой решения задач 
планирования, прогноза, диагностики). 

Процесс статистического исследования можно условно разбить на 
шесть основных этапов: 

• Определение конечных целей моделирования, набора участвующих в 
модели факторов и показателей. 

• Предмодельный анализ физической сущности изучаемого явления , 
формирование и формализация априорной информации. 

• Вывод общего вида модели. 
• Статистический анализ модели (оценка неизвестных значений 

участвующих в описании модели параметров). 
• Верификация модели. 
• Уточнение модели, в частности возвращение ко второму этапу (в 

случае необходимости). 
К наиболее распространенным в статистических приложениях типам 

математических моделей относятся: 
• Модели законов распределения вероятностей. 
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• Линейные модели, описывающие характер и 

структуру взаимосвязей анализируемых показателей (в частности, 
регрессионные модели, модели дисперсионного анализа, модели 
факторного анализа и временных рядов). 

• Модели марковского типа, описывающие закономерности случайных 
переходов объектов из одного состояния в другое. 

• Геометрические модели, позволяющие осуществлять удобную 
визуализацию исходных многомерных данных. 

Таким образом, математическую статистику можно определить как 
науку о принятии решений в условии неопределенности. 

 

20.2 Выборка и ее характеристики 
 

При изучении качественного и количественного признака, 
характеризующего совокупность однородных объектов, не всегда имеется 
возможность обследовать каждый объект изучаемой совокупности. 
Например, в условиях массового производства электрических лампочек 
условимся считать стандартной лампочку, продолжительность горения 
которой составляет не менее 120 часов. Исследование каждой лампочки на 
продолжительность горения экономически не возможно, да и 
противоречит здравому смыслу. Поэтому вместо данных о качестве всех 
лампочек партии достаточно получить точные сведения о качестве 
небольшой их части, отобранной случайным образом и по ней судить о 
качестве всех лампочек партии. 

Вся подлежащая изучению совокупность однородных объектов 
называется генеральной совокупностью.  Часть случайно отобранных 
объектов называется выборочной совокупностью или выборкой. Число 
объектов в генеральной совокупности  или в выборке называют их 
объемом. 

Пусть из генеральной совокупности извлечена выборка, причем 
значение х1 наблюдалось n1 раз, х2 – n2 раз, хk – nk раз и nni =∑  – объем 
выборки. Наблюдаемые значения xi называются вариантами, а 
последовательность вариант, записанная в возрастающем порядке – 
вариационным рядом. Числа наблюдений называют частотами, а их 

отношения к объему выборки 
n
ni  - относительными частотами.  

Перечень соответствующих им частот или относительных частот называют 
статистическим распределением выборки. Статистическое 
распределение можно также задать в виде последовательности интервалов 
и соответствующих им частот (в этом случае за частоту принимают сумму 
частот, попавших в этот интервал). 
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Пример. Задано распределение частот выборки объема n =20: 
 
 

xi 2 6 12 
ni 3 10 7 

 
Написать распределение относительных частот. 
Решение. Найдем относительные частоты 

35,0
20
75,0

20
1015,0

20
3 321 ======

n
n

n
n

n
n  

Распределение относительных частот имеет вид: 
 

xi 2 6 12 

n
ni  0,15 0,5 0,35 

 
Контроль: 0,15 + 0,5 + 0,35 = 1. 
 
Эмпирической функцией распределения называют функцию F*(x), 
определяющую для каждого значения х относительную частоту события       
Х < x, то есть  

n
nxF i=)(* , 

где nx – число вариант, меньше Х;  n – объем выборки. 
 

В отличие от эмпирической функции распределения выборки функцию 
распределения F(x) генеральной совокупности называют теоретической 
функцией распределения. Различие между ними состоит в том, что 
теоретическая функция распределения F(x) определяет вероятность 
события Х < x, а эмпирическая функция F*(x) определяет относительную 
частоту этого же события. Из теоремы Бернулли следует, что 
относительная частота события X < x, то есть F*(x) стремится к 
вероятности этого события. Отсюда следует целесообразность 
использования эмпирической функции распределения выборки для 
приближенного представления теоретической функции распределения 
генеральной совокупности. Тем более, что F*(x) обладает теми же 
свойствами, что и F(x): 

• Значения эмпирической функции F*(x)  принадлежат отрезку [0, 1].; 
• F*(x) – неубывающая функция; 
• Если х1 – наименьшая варианта, то F*(x) = 0 при х меньших или 

равных х1, если xk – наибольшая варианта, то F*(x) = 1 при x > xk. 
Таким образом, эмпирическая функция распределения выборки служит для 
оценки теоретической функции распределения генеральной совокупности. 
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Пример. Построить эмпирическую функцию распределения по выборке: 
 

xi 2 6 10 
ni 12 18 30 

 
Решение. Найдем объем выборки: 12 +18 + 30 =60. Наименьшая варианта 
равна 2, поэтому F*(x) = 0 при  х <= 2. Значение х < 6 наблюдается 12 раз, 
поэтому F*(x) = 12/60 = 0,2 при 62 ≤< x . Значения х < 10 наблюдались 
12+18 = 30 раз, следовательно F*(x) = 30/60 = 0,5 при 106 ≤< x . Так как х 
= 10 – наибольшая варианта, то F*(x) = 1 при x > 10. Искомая 
эмпирическая функция имеет вид: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

>
≤<
≤<

≤

=

.10,1
;106,5,0
;62,2,0

;2,0

)(*

x
x
x

x

xF . 

 
Для наглядности строят различные графики статистического 

распределения. 
Полигоном частот (относительных частот) называют ломаную, отрезки 
которой соединяют точки (x1, n1), (x2, n2),…, (xk, nk), (или  

),,(),...,,(),,( 2
2

1
1 n

nx
n
nx

n
nx k

k ). Для построения полигона на оси абсцисс 

откладывают варианты xi, а на оси ординат – соответствующие им точки ni 

(или 
n
ni ). Точки соединяют отрезками прямых и получают полигон частот 

(относительных частот).  
Для непрерывного признака целесообразно строить гистограмму , 

для чего интервал, в котором заключены все наблюдаемые значения 
признака, разбивают на несколько частичных интервалов длиной h и 
находят для каждого частичного интервала ni – сумму частот вариант, 
попавших в              i - интервал. 

Гистограммой частот называют ступенчатую фигуру, состоящую из 
прямоугольников, основаниями которых служат частичные интервалы 

длиной hi, а высоты равны отношению 
i

i

h
n (плотность частоты). 

Для построения гистограммы частот на оси абсцисс откладывают 
частичные интервалы, а над ними проводят отрезки, параллельные оси 

абсцисс на расстоянии 
i

i

h
n . Площадь i - го частичного прямоугольника 
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равна ii
i

i nh
h
n

=⋅   - сумме частот вариант i - го интервала. 

Следовательно, площадь гистограммы частот равна сумме всех частот, то 
есть объему выборке. 
 

Как известно, случайную величину можно характеризовать не только 
функцией распределения, но и числами – моментами распределения, 
которые определяются по формуле 

dxxfxm k
k )(∫

+∞

∞−

= , 

где f(x) – плотность вероятности случайной величины. 
Аналогичным образом статистические свойства выборки можно 
характеризовать не только эмпирической функцией распределения, но и 
выборочными моментами. Выборочный момент k - го порядка равен 
среднему арифметическому выборочных значений 

i

n

i

k
ik nx

n
m ∑

=

=
1

* 1 . 

В соответствии с формулой выборочный момент 1 порядка (или 
выборочное среднее) равен среднему арифметическому выборочных 
значений: 

âi

n

i
i xnx

n
m == ∑

=1

*
1

1 . 

Выборочное среднее характеризует расположение выборки на 
действительной оси. Среднее значение выборочного среднего: 

ana
n

nxm
n

mm i

n

i
i

n

i
i =⋅=⋅= ∑∑

== 11
1

*
11

1)(1)( , 

то есть совпадает при любом n с априорным средним а. 
Разность  

xi – m1* 
 называют отклонением выборочного значения от выборочного среднего. 
Выборочные моменты отклонения называются центральными и 
обозначают символом M*k . 

...3,2)(1
1

*
1

* =⋅−= ∑
=

knmx
n

M i
k

n

i
ik  

Выборочная дисперсия (центральный выборочный момент 2 порядка) 
является мерой рассеяния выборочных значений относительно 
выборочного среднего: 

Bi

n

i
i Dnmx

n
M =⋅−= ∑

=

2

1

*
1

*
2 )(1 . 

Найдем дисперсию выборочного среднего. Так, дисперсия суммы 
независимых случайных величин равна сумме дисперсий, то при 

∞<= 2
2 )( σixM , 
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11 σσ =⋅== ∑∑
==
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Таким образом, дисперсия выборочного среднего равна априорной 
дисперсии, деленной на объем выборки. По мере увеличения объема 
выборки дисперсия выборочного среднего уменьшается и при ∞→n , 
стремится к нулю. 

Из закона больших чисел следует, что выборочное среднее 
стремится по вероятности к априорному среднему. 
При ограничениях, указываемых центральной предельной теоремой, 
выборочные моменты, как суммы независимых случайных величин, 
асимптотически нормальны при ∞→n . 
 Выборочные характеристики, согласно закону больших чисел, могут 
служить оценками соответствующих априорных характеристик. 
Достаточно хорошие оценки получаются при выборках очень большого 
объема, но для экономии времени и средств желательно ограничиться 
возможно меньшим объемом выборки.  
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